L-лизин-продуцирующая коринеформная бактерия с мутантным геном fusa и способ получения l-лизина с использованием этой бактерии

Группа изобретений относится к области биотехнологии. Представлена L-лизин-продуцирующая бактерия рода Corynebacterium, модифицированная таким образом, что в аминокислотной последовательности продукта мутантного гена fusA содержится аминокислотная замена H461Q. Представлена L-лизин-продуцирующая бактерия рода Brevibacterium, модифицированная таким образом, что в аминокислотной последовательности продукта мутантного гена fusA содержится аминокислотная замена H461Q. Представлен способ получения L-лизина, включающий культивирование любой из указанных модифицированных бактерий. Группа изобретений позволяет повысить уровень продукции L-лизина в указанных штаммах-продуцентах не менее чем на 9% по сравнению с родительскими штаммами-продуцентами L-лизина. 3 н.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к биотехнологии, в частности к способу получения L-лизина, с использованием модифицированной коринеформной бактерии, содержащей мутантный ген fusA, кодирующий фактор элонгации G.

Незаменимую аминокислоту L-лизин, широко используемую в качестве кормовой добавки для животноводства и птицеводства, традиционно получают ферментацией сахаров с помощью коринеформных бактерий, таких как Corynebacterium glutamicum (US 3687810, US 3929571), Brevibacterium sp. (US 3687810, US 3929571, RU 2034921), а также кишечной палочки Escherichia coli (RU 2347807). Для увеличения продукции L-лизина, как правило, используют модифицированные (генетически измененные) штаммы бактерий с повышенной продуктивностью, полученные либо с помощью генетической инженерии, либо традиционными селекционными методами.

Одним из подходов к повышению продуктивности штаммов является получение мутантных штаммов, устойчивых к антибиотикам. Известны способы получения L-лизина, в которых используют бактерии, устойчивые к антибиотикам рифампицину (US 4623623), стрептомицину (US 3929571, US 4623623), канамицину (US 7736880, US 8361758) или одновременно к нескольким антибиотикам (US 3687810, US 4623623). Как правило, у бактерий, устойчивых к перечисленным выше антибиотикам, наблюдают изменения в системах транскрипции и трансляции, что и является причиной повышения продукции L-лизина.

Недавно предложен способ получения L-лизина с использованием мутантных штаммов Corynebacterium glutamicum ВКПМ В-11609 или Brevibacterium flavum ВКПМ В-11404, Brevibacterium flavum ВКПМ В-11635, устойчивых к фузидиновой кислоте (RU 2549690). Природа мутаций устойчивости к фузидиновой кислоте в штаммах Corynebacterium glutamicum или Brevibacterium flavum, приводящих к повышенной продуктивности по L-лизину, не известна.

Задачами настоящего изобретения являются повышение продуктивности штаммов-продуцентов L-лизина, принадлежащих к роду Corynebacterium или роду Brevibacterium, и разработка способа получения L-лизина с использованием этих штаммов.

Задачи решены путем:

- получения L-лизин-продуцирующей бактерии, принадлежащей к роду Corynebacterium или роду Brevibacterium и модифицированной таким образом, что в аминокислотной последовательности продукта гена fusA в 461 положении аминокислотный остаток гистидина заменен на аминокислотный остаток глутамина.

- разработки способа получения L-лизина, включающего культивирование заявляемой бактерии в подходящих условиях и выделение указанной L-аминокислоты из культуральной жидкости.

Задачи настоящего изобретения решены благодаря обнаружению того факта, что штаммы Corynebacterium или Brevibacterium, устойчивые к фузидиновой кислоте, обладают более высокой продуктивностью по L-лизину, если они содержат специфическую мутацию в гене fusA, кодирующем фактор элонгации G.

В соответствии с настоящим описанием изобретения в качестве бактерии может быть использована коринеформная бактерия, продуцирующая L-лизин, при этом бактерия модифицирована таким образом, что содержит специфические мутации в гене fusA, приводящие к образованию в клетке измененного фактора элонгации G (продукт гена fusA), в аминокислотной последовательности которого в 461 положении аминокислотный остаток гистидина заменен на аминокислотный остаток глутамина.

Термин «коринеформная бактерия», согласно настоящему изобретению, обозначает бактерии рода Corynebacterium и бактерии рода Brevibacterium, часть которых в настоящее время классифицируют как бактерии рода Corynebacterium (W.Liebl, et al, 1991).

В качестве примеров коринеформной бактерии можно привести, но не ограничиться этим, штаммы Corynebacterium glutamicum АТСС13032 (депонирован в американской коллекции типовых культур), Corynebacterium glutamicum ВКПМ В-11608 и Brevibacterium flavum ВКПМ В-5593, депонированные во Всероссийской коллекции промышленных микроорганизмов, ВКПМ.

Термин «бактерия, способная продуцировать L-лизин» означает бактерию, способную накапливать L-лизин в культуральной среде в больших количествах по сравнению с природным или родительским штаммом Corynebacterium glutamicum АТСС 13032 или Brevibacterium flavum ВКПМ В-5593.

Термин «бактерия содержит специфические мутации в гене fusA» означает, что бактерия модифицирована таким образом, что нуклеотидная последовательность гена fusA из Corynebacterium glutamicum ATCC13032 или Brevibacterium flavum ВКПМ B-5593 (SEQ ID NO: 1 и SEQ ID NO: 2, соответственно) в положении 1383 вместо цитозина содержит гуанин или аденин, что в свою очередь приводит к образованию в клетках Corynebacterium glutamicum или Brevibacterium flavum измененного фактора элонгации G (продукт гена fusA), в аминокислотной последовательности которого в 461 положении аминокислотный остаток гистидина заменен на аминокислотный остаток глутамина (SEQ ID NO: 3 или SEQ ID NO: 4).

Наличие замен в гене fusA в бактериальной хромосоме определяют при помощи известных методов, например, с помощью полимеразной цепной реакции (ПЦР) и секвенирования.

Нуклеотидные последовательности гена в различных видах и штаммах коринеформных бактерии могут незначительно отличаться, поэтому нуклеотидные последовательности гена fusA не ограничиваются нуклеотидными последовательностями генов, приведенных в SEQ ID NO: 1 и SEQ ID NO: 2, однако могут включать гены, гомологичные нуклеотидным последовательностям SEQ ID NO: 1 и SEQ ID NO: 2, кодирующие варианты белка EF-G, продукта гена fusA.

Направленное введение замен в положении 1383 нуклеотидной последовательности гена fusA в хромосоме может быть осуществлено с помощью известных методов генной инженерии, в частности метода замещения, основанного на гомологичной рекомбинации ( A. et al, 1994).

С помощью ПЦР получают мутантный ген fusA, содержащий замены в положении 1383 и бактерию для ее модификации трансформируют фрагментом ДНК, содержащим мутантный ген. Затем исходный ген на хромосоме замещают мутантным геном с помощью гомологичной рекомбинации, и полученный штамм отбирают. Замещение гена с использованием гомологичной рекомбинации может быть проведено с использованием плазмиды, не способной к автономному поддержанию в клетке хозяина.

Способ в общем виде согласно настоящему изобретению

Способом согласно настоящему изобретению является способ получения L-лизина, включающий стадии выращивания L-лизин-продуцирующей коринеформной бактерии с мутантным геном fusA в питательной среде с целью продукции и накопления L-лизина в питательной среде и выделения L-лизина из культуральной жидкости.

В качестве питательной среды для культивирования используют минеральную среду, включающую фосфаты натрия или калия, соли магния, а при необходимости соли марганца и железа, и содержащую в качестве источника углерода глюкозу или глюкозные сиропы или сахарозу, в качестве источника азота - аммонийные соли или мочевину, а также необходимые для роста аминокислоты и витамины. В качестве компонентов, ускоряющих рост бактерий, дополнительно добавляют кукурузный экстракт или гидролизаты глютена или сои. Культивирование бактерий проводят при 24-42°С, преимущественно при 30-32°С, и рН среды в интервале 6,0-8,5, преимущественно в интервале 6,8-7,2.

Культивирование бактерий осуществляют в пробирках, колбах или специальных реакторах при аэробных условиях.

Примеры осуществления настоящего изобретения

Пример 1. Конструирование штамма Corynebacterium glutamicum ВКПМ В-12500, содержащего мутантный ген fusA

Штамм Corynebacterium glutamicum ВКПМ В-12500 был сконструирован путем замены нативного гена fusA (SEQ ID NO: 1) мутантной копией гена, в нуклеотидной последовательности которого в положении 1383 остаток цитозина заменен на остаток гуанина. Для этого с помощью ПЦР была получена мутантная копия гена fusA с заменой в положении 1383 остатка цитозина на остаток гуанина, которая была вставлена в плазмиду pIKA, полученную путем клонирования на векторе pUC19 ("Thermo scientific"), гена sacB из B.subtilis 168 (NC_000964, Accession Number X02730) и гена KmR. Так как плазмида pIKA-fusA-C1383G не способна автономно поддерживаться в клетках Corynebacterium glutamicum, то после введения плазмиды с помощью электропорации в клетки С. glutamicum ВКПМ В-11608, были отобраны клоны, в хромосоме которых в результате двух циклов гомологичной рекомбинации происходило замещения нативного гена fusA мутантной копией гена fusA-C1383G. Наличие замены в гене fusA подтверждали с помощью ПЦР анализа с SNP-полимеразой и секвенирования. Полученный штамм Corynebacterium glutamicum с мутантным геном fusA-C1383G депонирован во Всероссийской коллекции промышленных микроорганизмов ГосНИИгенетика как Corynebacterium glutamicum ВКПМ В-12500.

Пример 2. Конструирование штамма Brevibacterium flavum ВКПМ В-12501, содержащего мутантный ген fusA

Штамм Brevibacterium flavum ВКПМ В-12501 был сконструирован путем замены нативного гена fusA (SEQ ID NO: 2) мутантной копией гена, в нуклеотидной последовательности которого в положении 1383 остаток цитозина заменен на остаток гуанина. Для этого с помощью ПЦР была получена мутантная копия гена fusA с заменой в положении 1383 остатка цитозина на остаток гуанина, которая была вставлена в плазмиду pIKA, полученную путем клонирования на векторе pUC19 ("Thermo scientific"), гена sacB из B.subtilis 168 (NC_000964, Accession Number X02730) и гена KmR. Так как плазмида pIKA-fusA-C1383G не способна автономно поддерживаться в клетках Brevibacterium flavum, то после введения плазмиды с помощью электропорации в клетки Brevibacterium flavum ВКПМ В-5593, были отобраны клоны, в хромосоме которых в результате двух циклов гомологичной рекомбинации происходило замещения нативного гена fusA мутантной копией гена fusA-C1383G. Наличие замены в гене fusA подтверждали с помощью ПЦР анализа с SNP-полимеразой и секвенирования. Полученный штамм Brevibacterium flavum с мутантным геном fusA-C1383G был депонирован во Всероссийской коллекции промышленных микроорганизмов ГосНИИгенетика как Brevibacterium flavum ВКПМ В-12501.

Пример 3. Продукция L-лизина полученными штаммами

Оценку проводят в пробирочных тестах. Для этого 0,3 мл культуры каждого из сконструированных штаммов, предварительно выращенных в течение 22 ч с перемешиванием (240 об/мин) при 30°С, вносят в пробирки с 3 мл среды следующего состава (мас. %): глюкоза - 10,0 хлорид аммония - 2,5, фосфат калия однозамещенный - 0,1, сульфат магния семиводный - 0,1, мел - 2,5, биотин - 0,00001, тиамин - 0,00002, с добавлением кислотного гидролизата пшеничного глютена* 50,0 мл/л, вода - остальное. *Гидролизат пшеничного глютена получают путем гидролиза пшеничного глютена серной кислотой согласно известным способам гидролиза различного сырья с целью получения источника ростовых факторов при микробиологическом производстве аминокислот (Биотехнология и биоинженерия, Рига, 1978). Перед внесением в среду гидролизат нейтрализуют концентрированным аммиаком. В качестве штаммов сравнения используют родительские штаммы Brevibacterium flavum ВКПМ В-5593 и Corynebacterium glutamicum ВКПМ В-11608.

Пробирки с культурами инкубируют в течение 48 ч с перемешиванием (250 об/мин) при 30°С и затем в культуральной жидкости определяют содержание L-лизина методом тонкослойной хроматографии. Результаты представлены в таблице.

Из результатов, представленных в таблице, следует, что штаммы Brevibacterium flavum ВКПМ В-12501 и Corynebacterium glutamicum ВКПМ В-12500, содержащие мутантный ген fusA, продуцируют на 9-18% больше лизина, чем родительские штаммы.

Список источников информации

1. US 3687810

2. US 3929571

3. US 3687810

4. US 3929571

5. RU 2034921

6. RU 2347807

7. US 4623623

8. US 3929571

9. US 7736880

10. US 8361758

11. RU 2549690

12. W. Liebl, M. Ehrmann, W. Ludwig and K.H. Schleifer. "Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and Their Distinction by rRNA Gene Restriction Patterns» International Journal of Systematic Bacteriology - 1991. - V. 41. - P. 255-260.

13. Α., Tauch Α., W., Kalinowski J., Thierbach G., and A. "Small mobilizable multi-purpose cloning vectors derived from the E.coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum."// Gene. - 1994. - V.145. P. - 69-73.)

14. Биотехнология и биоинженерия, Рига, 1978.

1. L-Лизин-продуцирующая бактерия, принадлежащая к роду Corynebacterium и модифицированная таким образом, что в аминокислотной последовательности продукта мутантного гена fusA в 461 положении аминокислотный остаток гистидина заменен на аминокислотный остаток глутамина.

2. L-Лизин-продуцирующая бактерия, принадлежащая к роду Brevibacterium и модифицированная таким образом, что в аминокислотной последовательности продукта мутантного гена fusA в 461 положении аминокислотный остаток гистидина заменен на аминокислотный остаток глутамина.

3. Способ получения L-лизина, включающий культивирование бактерии по п. 1 или п. 2 в подходящих условиях и выделение указанной L-аминокислоты из культуральной жидкости.



 

Похожие патенты:

Изобретение относится к биотехнологии и представляет собой модифицированный полинуклеотид, кодирующий аспартаткиназу (LysC), где инициирующий кодон полинуклеотида заменен на ATG.

Изобретение относится к способу продуцирования L-лизина и рибофлавина или L-треонина и рибофлавина. Способ включает культивирование модифицированного микроорганизма, который модифицирован путем усиления активности семейства ферментов биосинтеза рибофлавина в микроорганизме рода Corynebacterium, обладающего способностью продуцирования L-лизина или L-треонина, чтобы увеличивать продуцирование рибофлавина при сохранении продуцирования L-лизина или L-треонина на высоком уровне; и продуцирование L-лизина и рибофлавина или L-треонина и рибофлавина посредством ферментационного процесса.

Изобретение относится к биотехнологии и представляет собой модифицированный Corynebacterium glutamicum, способный продуцировать L-лизин посредством утилизации ксилозы, в который введены активности ксилозоизомеразы (XylA) и ксилулокиназы (XylB), имеющие происхождение из Erwinia carotovora.
Изобретение относится к биотехнологии и микробиологии и представляет собой способ получения бактерии Corynebacterium glutamicum или Brevibacterium flavum с повышенным уровнем синтеза L-лизина, включающий высев культуры бактерии Corynebacterium glutamicum или Brevibacterium flavum, способной продуцировать L-лизин, на среду, содержащую фузидиновую кислоту, и отбор среди выросших колоний таких, которые обладают повышенным уровнем синтеза L-лизина.

Изобретение относится к области биохимии и представляет собой способ получения L-аминокислоты - L-лизина, L-треонина, L-аспарагина, L-аспарагиновой кислоты, L-метионина или L-изолейцина - предусматривающий культивирование бактерии Escherichia coli в среде для получения и накопления L-аминокислоты и сбор L-аминокислоты.
Изобретение относится к биотехнологии и представляет собой способ микробиологического синтеза L-треонина с использованием бактерии, принадлежащей к роду Escherichia, в которой ген fumA инактивирован.
Изобретение относится к области биотехнологии. .

Изобретение относится к области биохимии. .
Изобретение относится к области биохимии. .

Группа изобретений относится к рекомбинантному микроорганизму рода Corynebacterium, обладающему способностью продуцировать путресцин, и способу получения путресцина. В указанном рекомбинантном микроорганизме гидролазная активность белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO: 17 или SEQ ID NO: 19, удалена.

Изобретение относится к биотехнологии и представляет собой коринеформную бактерию, обладающую способностью продуцировать гетерологичный белок посредством секреторной продукции.

Изобретение относится к биотехнологии, в частности к генетической инженерии, и представляет собой космидный вектор pСLF3 для клонирования фрагментов ДНК в коринебактериях.

Изобретение относится к биоте)(:нологии, в частности к генетической инженерии, и позволяет получать микробиологическим синтезом новый полипептид со свойствами лимфотоксина человека при упрощеннойтехнологии его получения.

Изобретение относится к области биохимии, в частности к способу трансформации растения, включающему контактирование клетки растения с клеткой Agrobacterium, которая имеет недостаточность функции RecA, а также к растению, экспрессирующему экзогенный ген, полученному вышеуказанным способом.

Изобретение относится к биотехнологии и представляет собой модифицированный микроорганизм рода Corynebacterium, обладающий повышенной способностью продуцировать путресцин, где активность белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO: 18 или SEQ ID NO: 20, в микроорганизме рода Corynebacterium, способном продуцировать путресцин, ослаблена или устранена по сравнению с его эндогенной активностью.

Группа изобретений относится к биотехнологии. Предложена ДНК-конструкция, кодирующая слитый белок-предшественник, в котором вспомогательная аминокислотная последовательность связана с N-концом последовательности зрелого целевого полипептида переходной областью, предназначенной для распознавания и расщепления гибридного предшественника специфической протеазой с образованием немодифицированной зрелой формы интересующего белка.

Изобретение относится к области биохимии, генной инженерии и биотехнологии, в частности к штамму Escherichia coli BL21(DE3)GoldpETCYPopti. Настоящий штамм является продуцентом рекомбинантного циклофилина А человека.
Наверх