Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом



Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом
Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом

 


Владельцы патента RU 2612192:

Открытое акционерное общество "Элеконд" (RU)

Изобретение относится к производству конденсатора с двойным электрическим слоем. Техническим результатом изобретения является создание конденсатора с двойным электрическим слоем с низким эквивалентным последовательным сопротивлением на номинальное напряжение 2,5 В с диапазоном рабочих температур от минус 55 до 65°С, в том числе работающих при пиковых токовых нагрузках с отсутствием снижения рабочего напряжения при пониженных температурах. Согласно изобретению в состав рабочего электролита входят: ионогены 12-47 мас.%, смесь органических растворителей, где основной растворитель ацетонитрил занимает 30-78 мас.%, а сорастворитель из числа нитрилов, или циклических карбонатов, или лактонов, или эфиров, или циклических эфиров 5-35 мас.%, при этом электролит дополнительно содержит газопоглощающую добавку 0,1-5 мас.%. Способ приготовления рабочего электролита включает растворение ионогена в одном из растворителей при комнатной температуре при скорости перемешивания 60 об/мин, добавление основного растворителя с перемешиванием раствора в течение 12-48 часов, после чего растворитель с растворенным ионогеном подвергают осушению молекулярным ситом при непрерывном перемешивании, и затем после добавления газопоглощающей добавки смесь подвергают нагреву до 50°С. 3 н. и 4 з.п. ф-лы, 9 табл.

 

Рабочий электролит для конденсатора, способ его приготовления и конденсатор с двойным электрическим слоем с таким электролитом.

Изобретение относится к области электротехники, конкретно к производству конденсаторов с двойным электрическим слоем (далее конденсатор с ДЭС), в частности с низким эквивалентным последовательным сопротивлением на номинальное напряжение 2,5 В с диапазоном рабочих температур от минус 55 до 65°С, в том числе для конденсаторов с ДЭС, работающих при пиковых токовых нагрузках с отсутствием снижения рабочего напряжения при пониженных температурах.

Конденсатор с ДЭС имеет такие характеристики, как емкость, рабочее напряжение, плотность энергии, внутреннее сопротивление. В настоящее время ведутся разработки в направлении улучшения всех этих характеристик, а также ведутся разработки в направлении обеспечения надежности конденсаторов с ДЭС в широком диапазоне рабочих температур и увеличения их срока службы. Надежную работу конденсатора с ДЭС на всем диапазоне рабочих температур обеспечивает рабочий электролит, а точнее его состав. На срок службы конденсатора с ДЭС влияет остаточная влажность как в рабочем электролите, так и в самом конденсаторе с ДЭС.

Известен электролит для электронных устройств, в том числе конденсаторов с ДЭС, описанный в патенте US 7675737, кл. H01G 9/00, опубл. 2010-03-09, содержащий ацетонитрил в качестве основного растворителя, по крайней мере два апротонных сорастворителя, смесь проводящих солей и ионных жидкостей. Однако этот электролит имеет недостаточно высокую электропроводность при пониженных температурах.

Наиболее близким является конденсатор с ДЭС, описанный в патенте US 8804309, кл. H01G 9/00, H01M 6/04, опубл. 2011-12-20, содержащий электролит на основе ацетонитрила в качестве основного растворителя, с минимальной рабочей температурой, но не более 40%, иначе снизится электропроводность раствора при нормальных условиях.

Ионоген должен обладать хорошей растворимостью в используемых растворителях и достаточно большим электрохимическим окном для обеспечения необходимого рабочего напряжения конденсатора. Концентрация ионогена подбирается таким образом, чтобы обеспечить высокие значения электропроводности электролита как при нормальных условиях, так и при пониженных температурах. Решающим фактором будет являться отношение значения электропроводности электролита при нормальных условиях к значению электропроводности электролита при пониженной температуре. В таблице 1 приведены значения электропроводности электролита при различных концентрациях 1-этил-3-метилимидазолия тетрафторобората в смеси ацетонитрила и пропионитрила.

Несмотря на то что максимальная электропроводность при нормальных условиях достигается при концентрации ионогена 2 моль/л, при температуре минус 55°С максимум электропроводности наблюдается при концентрации 1,5 моль/л, и этой же концентрации соответствует наименьшее значение отношения электропроводностей электролита. Поэтому оптимальной концентрацией ионогена для данной системы является 1,5 моль/л.

Наиболее предпочтительным веществом для использования в качестве ионогена является хотя бы одно вещество, выбранное из солей четвертичного алкиламмония или ионных жидкостей, либо их смесь. Из солей четвертичного алкиламмония наиболее предпочтительным является тетраэтиламмония тетрафтороборат в силу его высокой способности к растворению в смеси растворителей и низкой стоимости. Из ионных жидкостей наиболее предпочтительным является 1-этил-3-метилимидазолия тетрафтороборат по причине его высокой электропроводности.

Как видно из Таблицы 2, при одинаковой концентрации соли и ионной жидкости в электролите в случае применения соли электропроводность ниже. В случае применения смеси соли и ионной жидкости электропроводность при пониженной температуре выше, чем при применении соли или ионной жидкости по отдельности. Таким образом, применение смеси ионогенов улучшает низкотемпературные характеристики электролита и конденсатора с ДЭС.

В качестве газопоглощающей добавки наиболее предпочтителен нитробензиловый спирт по причине его низкой токсичности по сравнению с другими нитроароматическими соединениями, а также отсутствия эффекта снижения электропроводности при его добавлении в электролит при пониженных температурах. Использование газопоглощающей добавки необходимо в тех случаях, когда конденсатор с ДЭС, изготовленный с использованием рабочего электролита в соответствии с настоящим изобретением, эксплуатируется при пиковых токовых нагрузках. Предлагается электролит следующего состава:

Соотношения указанных компонентов были оптимизированы, что позволило получить оптимальные параметры электролита. Параметры данного электролита отражены в Таблице 4:

Параметры рабочего электролита зависят от режима его приготовления, в ходе которого происходит перемешивание компонентов электролита между собой.

Сначала соль и/или ионная жидкость растворяются в одном из растворителей, затем добавляется другой растворитель. Как минимум, растворитель с растворенной солью и/или ионной жидкостью подвергается осушению молекулярным ситом при непрерывном перемешивании, что связано со значительным содержанием воды в соли и ионной жидкости.

Конечный раствор подвергается перемешиванию в течение определенного промежутка времени.

Технологический процесс приготовления рабочего электролита включает в себя следующие этапы:

1) загрузка одного из растворителей в реактор при температуре окружающей среды. Предпочтительнее загружать тот растворитель, содержание которого в смеси растворителей меньше, а именно пропионитрил;

2) загрузка соли и/или ионной жидкости в растворитель и перемешивание до полного растворения. Скорость перемешивания устанавливается на уровне 60 оборотов мешалки за 1 минуту. В том случае, если используется смесь соли и ионной жидкости, сначала загружается ионная жидкость, а затем соль;

3) загрузка нитробензилового спирта. Для ускорения растворения производится нагрев смеси до полного растворения, при этом температура не должна превысить +50°С;

4) остывание смеси до температуры окружающей среды проводится при постоянном перемешивании;

5) загрузка молекулярного сита в смесь и перемешивание до тех пор, пока содержание воды в смеси не уменьшится до 20 ppm;

6) загрузка второго растворителя (ацетонитрил) и перемешивание получившегося раствора в течение 12-48 часов. Предпочтительным является перемешивание в течение 24-27 часов;

7) перемещение готового электролита в герметичную емкость для хранения.

Секция конденсатора с ДЭС изготавливается из электродов на основе высокопористых углеродных материалов и сепараторного материала, расположенного между ними, и имеет вид слоистой или спирально намотанной структуры, образованной чередованием электродов и сепаратора. Секция подвергается сушке в вакууме в течение определенного времени при температуре не ниже 100°С. Затем секция подвергается пропитке рабочим электролитом, помещается в корпус, закрывается уплотнительным элементом и уплотняется в условиях контролируемой влажности. При пропитке предпочтительным является чередование давления выше и ниже атмосферного.

В соответствии с описанным выше процессом приготовления были изготовлены рабочие электролиты. Их состав и нормы соответствуют указанным выше. Составы и параметры электролитов приведены в Таблицах 6-9. Рабочий электролит, Пример 2, предназначен для использования в конденсаторах с ДЭС, работающих при пиковых токовых нагрузках.

Пример 1

Пример 2

Как видно из параметров электролитов, увеличение концентрации нитробензилового спирта незначительно снижает электропроводность электролита, однако его параметры полностью соответствуют нормам, приведенным выше.

Пример 3

В соответствии с указанным выше способом были изготовлены конденсаторы с ДЭС. Для изготовления использовался рабочий электролит, Пример 2.

Параметры конденсаторов с ДЭС были измерены, результаты измерений приведены в Таблице 9.

Как видно из параметров, приведенных в таблице, конденсаторы с ДЭС с использованием электролита в соответствии с настоящим изобретением имеют высокое напряжение, при этом рабочее напряжение не снижается при снижении температуры.

1. Рабочий электролит для конденсатора с двойным электрическим слоем на номинальное напряжение 2,5 В и рабочие температуры от минус 55 до 65°С, в состав которого входят: смесь ионогенов в виде соли четвертичного алкиламмония и органической либо неорганической кислоты с ионной жидкостью; смесь органических растворителей, где основной растворитель ацетонитрил, а сорастворитель из числа нитрилов, или циклических карбонатов, или лактонов, или эфиров, или циклических эфиров, причем основной растворитель занимает 30-78 мас.%, отличающийся тем, что в электролите ионоген занимает 12-47 мас.%, сорастворитель занимает 5-35 мас.%, а дополнительная газопоглощающая добавка занимает 0,1-5 мас.%.

2. Рабочий электролит по п. 1, отличающийся тем, что оптимальной концентрацией для ионогена является 38 мас.%.

3. Рабочий электролит по п. 1, отличающийся тем, что солью четвертичного алкиламмония и неорганической кислоты является тетраэтиламмония тетрафторборат.

4. Рабочий электролит по п. 1, отличающийся тем, что ионной жидкостью является 1-этил-3-метилимидазолия тетрафторборат.

5. Рабочий электролит по п. 1, отличающийся тем, что газопоглощающей добавкой является нитробензиловый спирт.

6. Способ приготовления рабочего электролита для ДЭС на номинальное напряжение 2,5 В и рабочие температуры от минус 55 до 65°С, заключающийся в том, что ионогены, а именно сначала 1-этил-3-метилимидазолия тетрафтороборат, затем тетраэтиламмония тетрафтороборат, растворяют в одном из растворителей, а именно в пропионитриле, при комнатной температуре со скоростью перемешивания 60 об/мин после загрузки газопоглощающей добавки, а именно нитробензилового спирта, для ускорения процесса растворения производят нагрев смеси до +50°С, а остывание смеси проводят при постоянном помешивании, после чего растворитель с растворенным ионогеном подвергают осушению молекулярным ситом, после чего добавляют другой растворитель, а именно ацетонитрил, и перемешивают раствор предпочтительно в течение 12-48 часов, при этом основной растворитель занимает 30-78 мас.%, отличающийся тем, что сорастворитель занимает 5-35 мас.%, ионоген занимает 12-47 мас.%, газопоглощающая добавка занимает 0,1-5 мас.%.

7. Конденсатор с ДЭС на номинальное напряжение 2,5 В и рабочие температуры от минус 55 до 65°С представляет собой секцию, изготовленную на основе высокопористых углеродных материалов и сепараторного материала, расположенного между ними, имеющую вид слоистой или спиральной намотанной структуры, образованной чередованием электродов и сепаратора, пропитанную рабочим электролитом в режиме чередования давления и помещенную в корпус, который закрывают уплотнительным элементом, отличающийся тем, что секцию подвергают сушке в вакууме при температуре не ниже 100°С, корпус уплотняют в условиях контролируемой влажности, а рабочий электролит имеет состав по п. 1 и приготовлен способом по п. 6.



 

Похожие патенты:

Электрохимическое устройство для накопления энергии относится к электротехнике, в частности к конструкции электрохимического устройства, аккумулирующего электрическую энергию, и может быть использовано в современной энергетике, например в системах аварийного энергоснабжения, в устройствах, аккумулирующих энергию рекуперативного торможения на транспорте, в качестве тяговых батарей для электротранспорта (электромобилях, гибридных электромобилях).

Изобретение относится к литий-углеродному электрохимический конденсатору и способу его изготовления. Внутри термостатируемого объема конденсатора расположен положительный электрод, выполненный из углеродного наноматериала с высокой удельной поверхностью, выполненный из смеси высокопористого активированного угля с углеродными наночешуйками и углеродными нанотрубками, к которым добавлены оксидные соединения лития, отрицательный электрод, выполненный из литий-углеродного нанокомпозита, в виде мелкодисперсного графита с добавлением или без добавления наночастиц металлического лития.

Изобретение относится к электролитическим конденсаторам. .

Изобретение относится к производству алюминиевых электролитических конденсаторов. .

Изобретение относится к области электротехники, в частности к рабочему электролиту для конденсатора, преимущественно для алюминиевого электролитического конденсатора, на номинальные напряжения 6,3-63 В и рабочие температуры от минус 60 до 105°С, в состав которого входят, в мас.%: лактон - 20-70, амидосодержащее соединение - 10-50, дикарбоновая кислота или ее аммонийная соль - 3-30, третичный алифатический амин - 3-30, ароматическое нитросоединение - 0-8, ортофосфорная кислота - 0-6, бензойная кислота или ее аммонийная соль - 0-5, деионизованная вода - 0-5; а также к его способу приготовления и алюминиевому электролитическому конденсатору с таким рабочим электролитом.

Изобретение относится к производству алюминиевых электролитических конденсаторов. .

Изобретение относится к электротехнике, в частности к рабочему электролиту для конденсатора, способу его приготовления и алюминиевому электролитическому конденсатору с таким электролитом, работающему при напряжениях 16-63 В в интервале рабочих температур от минус 60 до 105°С.

Изобретение относится к области электротехники, точнее к электрохимическим конденсаторам, а именно к гибридным или асимметричным конденсаторам с щелочным электролитом, и может быть использовано для изготовления неполяризуемого гидроксидноникелевого электрода данного конденсатора.

Изобретение относится к области электротехники, а именно к твердотельным электрохимическим источникам тока, например аккумуляторным батареям и батареям двойнослойных конденсаторов - суперконденсаторов.

Изобретение относится к области электротехники, а именно к твердотельным электрохимическим источникам тока, например аккумуляторным батареям и батареям на основе двухслойных конденсаторов - суперконденсаторов.

Объектом настоящего изобретения является, в частности, проводящий электрод для системы (1) накопления электрической энергии с водным раствором электролита, где указанный электрод содержит металлический коллектор тока (3) и активное вещество (7), причем указанный металлический коллектор тока (3) содержит защитный проводящий слой (5), расположенный между указанным металлическим коллектором тока (3) и указанным активным веществом (7), отличающийся тем, что указанный защитный проводящий слой (5) содержит: от 30 до 85 мас.% в расчете на сухое вещество сополимерной матрицы, от 70 до 15 мас.% в расчете на сухое вещество проводящего наполнителя в дополнение к массовому количеству (в расчете на сухое вещество) сополимера, так чтобы в сумме получалось 100%.

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания.

Изобретение относится к области энергетики и может быть использовано для автономного обеспечения электроэнергией как отдельных приборов, механизмов и машин, так и крупных жилых и производственных объектов.

Изобретение относится к области твердотельной микро- и наноэлектроники, а именно к суперконденсаторам с неорганическим твердым электролитом, которые могут быть использованы в различных приборах мобильной связи, гибридных устройствах, таких как источник питания, благодаря накопленному в них электрическому заряду.

Изобретение относится к способу получения гибридного суперконденсатора, включающему по меньшей мере один этап сборки отрицательного электрода на основе по меньшей мере одного непористого углеродного материала и положительного электрода на основе по меньшей мере одного пористого углеродного материала, причем указанные электроды отделены друг от друга сепаратором, пропитанным жидким электролитом, содержащим по меньшей мере одну соль лития, растворенную в по меньшей мере одном растворителе, затем по меньшей мере один первый этап зарядки, причем указанный способ отличается тем, что: a) концентрация ионов лития в жидком электролите перед первым этапом зарядки больше или равна 1,6 моль/л, b) соль лития в жидком электролите содержит по меньшей мере 50 мас.% соли, выбранной из LiTFSI и ее производных; c) растворитель жидкого электролита содержит по меньшей мере 80 об.% растворителя, выбранного из циклических алкилкарбонатов, ациклических алкилкарбонатов, лактонов, сложных эфиров, оксаланов и их смесей; при условии, что указанный растворитель содержит по меньшей мере 20 об.% этиленкарбоната; d) пористый углеродный материал положительного электрода выбран из материалов, у которых средний размер пор больше 0,7 нм и удельная поверхность которых больше 700 м2/г; e) непористый углеродный материал отрицательного электрода выбран из материалов, способных внедрять ионы лития и имеющих удельную поверхность, меньшую или равную 150 м2/г; f) после этапа сборки зарядку указанного суперконденсатора реализуют в несколько последовательных этапов зарядки до максимального напряжения (Umax), составляющего между 4 и 5 вольтами, и при плотности тока в интервале от 10 мА/г до 400 мА/г; причем каждый этап зарядки отделен от следующего этапа зарядки промежуточным этапом саморазрядки или разрядки при плотности тока меньше 5 мА/г.

Изобретение относится к области электротехники и микроэлектроники, а именно к устройствам для хранения энергии, в которых выполнены пористые электроды для электрохимических конденсаторов с сильно развитой пористой поверхностью, сформированной с использованием нанотехнологий.

Изобретение относится к литий-углеродному электрохимический конденсатору и способу его изготовления. Внутри термостатируемого объема конденсатора расположен положительный электрод, выполненный из углеродного наноматериала с высокой удельной поверхностью, выполненный из смеси высокопористого активированного угля с углеродными наночешуйками и углеродными нанотрубками, к которым добавлены оксидные соединения лития, отрицательный электрод, выполненный из литий-углеродного нанокомпозита, в виде мелкодисперсного графита с добавлением или без добавления наночастиц металлического лития.
Наверх