Устройство для смазки опорного подшипника ротора двухроторной турбомашины


 


Владельцы патента RU 2612547:

Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО УМПО (RU)
Публичное акционерное общество "Авиационная холдинговая Компания "Сухой" (RU)

Устройство для смазки опорного подшипника ротора двухроторной турбомашины относится к области авиационного двигателестроения. Масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой. Целесообразно компенсационную емкость снабдить магистралью суфлирования, в которую установить нормально открытый запорный клапан, полость управления которым подключена к магистрали подачи масла. Изобретение позволит повысить надежность устройства для смазки опорного подшипника ротора двухроторной турбомашины и турбомашины в целом. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин.

Известно устройство для смазки опорного подшипника ротора двухроторной турбомашины, содержащее масляную полость опорного подшипника с магистралями подачи, слива, всасывания и откачки масла, подключенную к откачивающему насосу с приводом от ротора высокого давления через рессору (патент RU №2522748, МПК F02C 7/06, опубл. 20.07.2014 г.).

Известное устройство не позволяет предотвратить коксование смазки в застойных теплонапряженных полостях турбомашины, что снижает надежность его работы. Для снижения коксообразования путем уменьшения теплоотдачи в масло объем маслосборников стараются делать минимальным, однако при останове турбомашины масло стекает в маслосборники со стенок масляной полости и форсуночных коллекторов, что приводит к их переполнению при отсутствии циркуляции и охлаждения масла. Масло перегревается и коксуется. Продукты распада масла попадают как в проточную часть откачивающего насоса, так и в масляную полость в месте стыковки его качающего узла с приводной рессорой, что приводит к поломке подшипников и отказу в работе насоса.

Задача изобретения - устранение застойных зон в теплонапряженных местах масляной полости.

Указанная задача решается тем, что в устройстве для смазки опорного подшипника ротора двухроторной турбомашины, содержащем масляную полость опорного подшипника с магистралями подачи, слива, всасывания и откачки масла, подключенную к откачивающему насосу с приводом от ротора высокого давления через рессору, согласно изобретению, масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой. Целесообразно компенсационную емкость снабдить магистралью суфлирования, в которую установить нормально открытый запорный клапан, полость управления которым подключена к магистрали подачи масла.

Благодаря компенсационной емкости объем масляной полости опорного подшипника ротора турбомашины может быть дополнительно увеличен до размера, достаточного для того, чтобы вместить в себя все излишки масла, скапливающиеся в полости после останова турбомашины, и вывести их из теплонапряженных зон в более прохладное место, что позволит избежать перегрева масла и исключить образование в нем кокса.

На чертеже показана принципиальная схема опор ротора авиационного двухроторного газотурбинного двигателя.

Устройство для смазки опорного подшипника ротора двухроторной турбомашины содержит масляную полость 1 опоры турбины и два откачивающих насоса 2 и 3. Откачивающий насос 2 размещен внутри масляной полости 1 и приводится во вращение от ротора 4 низкого давления, а откачивающий насос 3 расположен снаружи полости и приводится во вращение от ротора 5 высокого давления через рессору 6. Под масляной полостью 1 установлена компенсационная емкость 7, сообщенная через сливные магистрали 8 и 9 с масляными полостями 1 и 10, а через всасывающую магистраль 11 - с входом в откачивающий насос 3. Масляная полость 10 расположена в зоне стыковки качающего узла насоса 3 и приводной рессоры 6. Верхняя полость компенсационной емкости 7 подключена к суфлирующей магистрали 12, в которой установлен нормально открытый запорный клапан 13, полость управления 14 которым сообщена с магистралью 15 подачи масла, идущей от нагнетающего насоса 16, вход в который подсоединен к маслобаку 17. Магистрали откачки масла 18 и 19 откачивающих насосов 2 и 3 объединены и выведены в маслобак 17.

При запуске двигателя первым включается в работу нагнетающий насос 16, приводимый во вращение от ротора 5 высокого давления, раскручиваемого стартером. Масло из маслобака 17 поступает на вход нагнетающего насоса 16, который переправляет его через магистраль 15 подачи масла к форсункам масляной полости 1 опоры турбины. При этом масло от нагнетающего насоса 16 попадает также и в полость управления 14 запорного клапана 13, который отсекает магистраль суфлирования 12 от атмосферы. Отработанное масло из масляной полости 1 через магистраль слива 8 эвакуируется в компенсационную емкость 7 и далее через магистраль всасывания 11 попадает на вход откачивающего насоса 3. Часть отработанной смазки из масляной полости 1 поступает на вход откачивающего насоса 2, который включается в работу позднее насоса 3 из-за наличия относительного скольжения роторов 4 и 5 на переходных режимах работы двигателя. От откачивающих насосов 2 и 3 масло по магистралям откачки 18 и 19 возвращается в маслобак 17. Масляная полость 10 в зоне стыковки качающего узла откачивающего насоса 3 с рессорой 6 дренажируется через сливную магистраль 9 в компенсационную емкость 7. Перекрытие запорным клапаном 13 магистрали суфлирования 12 обеспечивает надежность работы откачивающего насоса 3, так как устраняется подсос воздуха на вход насоса из атмосферы. При останове двигателя первым останавливается ротор 3 высокого давления, имеющий большую загрузку, чем ротор 4 низкого давления.

Давление масла за нагнетающим насосом 16 и в магистрали 15 подачи масла начинает снижаться, что приводит к падению давления масла в полости управления 14 запорного клапана 13, который сообщает магистраль суфлирования 12 с атмосферой. Воздушная пробка из компенсационной емкости 7 удаляется, освобождая в ней место для приема масла из масляных полостей 1 и 10 по сливным магистралям 8 и 9.

При останове ротора 3 высокого давления ротор 4 низкого давления вследствие инерции и меньшей загрузки продолжит вращение, а откачивающий насос 2 - откачку масла из масляной полости 1, что компенсирует прекращение откачки масла насосом 3, имеющим привод от ротора 5 высокого давления.

Осуществление изобретения позволяет повысить надежность устройства для смазки опорного подшипника ротора двухроторной турбомашины и турбомашины в целом.

1. Устройство для смазки опорного подшипника ротора двухроторной турбомашины, содержащее масляную полость опорного подшипника с магистралями подачи, слива, всасывания и откачки масла, подключенную к откачивающему насосу с приводом от ротора высокого давления через рессору, отличающееся тем, что масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой.

2. Устройство для смазки опорного подшипника ротора двухроторной турбомашины по п. 1, отличающееся тем, что компенсационная емкость снабжена магистралью суфлирования, в которой установлен управляемый нормально открытый запорный клапан, полость управления которым подключена к магистрали подачи масла.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении опор с расположением подшипника между двумя вращающимися роторами, в частности в газотурбинных двигателях авиационного и наземного применения.

Изобретение относится к энергетике. Опора двухвального газотурбинного двигателя, содержащая роликоподшипник, установленный между валами роторов низкого и высокого давлений, масляную подводящую полость под внутренним кольцом, маслоподводящие отверстия, выполненные во внутреннем кольце подшипника, сепаратор, центрированный по наружному кольцу, причём на беговых дорожках внутреннего и наружного колец выполнены одна или несколько радиальных маслоотводящих канавок произвольного профиля.

Изобретение относится к газотурбинным двигателям, а именно к маслосистемам, их агрегатам наддува полостей и устройствам суфлирования масла. Двухроторный газотурбинный двигатель снабжен системой последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектором, содержащим эжектируемую полость, эжектирующую полость и камеру смешения, предмасляная полость турбины сообщена, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, выход которой сообщен с входом камеры смешения, при этом эжектирующая полость своим входом сообщена с источником питания, а выходом с входом камеры смешения, выход камеры смешения сообщен с входной полостью форсажной камеры.

Изобретение относится к авиационным двухконтурным турбореактивным двигателям (ТРДД). Предложена передняя опора ротора вентилятора двухконтурного турбореактивного двигателя, содержащая ступицу, корпус подшипника, два упругих элемента, соединенных параллельно так, что их жесткости суммируются, роликовый подшипник, смазываемый барботажем, цапфу, фигурную втулку, закрепленную на цапфе и фиксирующую фланцем внутреннее кольцо подшипника и вращающиеся детали сегментного контактного уплотнения, сегментное контактное уплотнение, состоящее из втулки с резьбой, закрепленной на цапфе, кольца, по резьбе соединенного с этой втулкой, трех графитовых уплотнительных колец, составленных из отдельных сегментов, прижатых к контактирующему с ними кольцу двумя пружинами так, что между торцами сегментов этих колец остается зазор 0,05÷0,1 мм, два из которых без зазора вставлены друг в друга, а третье кольцо установлено встык к этим двум кольцам, причем стыки сегментов этих колец в окружном направлении разнесены друг от друга, лабиринтное уплотнение предмасляной полости опоры, состоящее из лабиринтного кольца и статорного элемента, трубу, расположенную внутри цапфы и образующую воздушную полость в ней, и в фигурной втулке и цапфе выполнены отверстия, через которые подводится масло для охлаждения кольца, контактирующего с графитовыми уплотнительными кольцами, и в трубе, цапфе и лабиринтном кольце выполнены отверстия, через которые подается воздух для наддува предмасляной полости опоры, отличающаяся тем, что корпус подшипника выполнен за одно целое с обоими упругими элементами, выполненными в виде упругих колец с равномерно чередующимися наружными и внутренними выступами, натяг между наружным кольцом подшипника и внутренними выступами упругих колец равен 0÷h/2 мм, где h - высота выступов упругих колец, равная h=0,15÷0,3 мм, в расточки, выполненные в наружном кольце подшипника с обеих его сторон, запрессованы две втулки с полированными торцами, выполненные из стали или бронзы БрС30, и торцы зазора между ступицей и наружным кольцом подшипника, в котором размещены упругие кольца, уплотнены металлическими уплотнительными кольцами, которые прижаты ответными полированными торцами к полированным торцам этих втулок резиновыми уплотнительными кольцами, расположенными в кольцевых канавках в бурте корпуса подшипника и корпусе сегментного контактного уплотнения, и на каждом металлическом уплотнительном кольце выполнен выступ, который входит соответственно в ответный паз, выполненный в бурте корпуса подшипника или корпуса сегментного контактного уплотнения с зазором по периметру паза, меньшим смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, и равным 0÷0,05 мм, а на торцах наружного кольца подшипника выполнены выступы, входящие в ответные пазы в металлических уплотнительных кольцах с зазором по периметру паза, равным или немного большим допустимого смещения цапфы в ступице, с зазором 0,15÷0,3 мм, и радиальный зазор между металлическими уплотнительными кольцами и корпусом подшипника меньше смещения металлического уплотнительного кольца, при котором возникают взаимные проскальзывания металлического и резинового уплотнительных колец, меньше 0,1 мм, и радиальное расстояние от наружной окружности, ограничивающей зону контакта резинового уплотнительного кольца с металлическим уплотнительным кольцом, до наружной цилиндрической поверхности металлического уплотнительного кольца таково, что гидравлическое давление, действующее на каждое металлическое уплотнительное кольцо со стороны уплотнительного резинового кольца, уравновешивает в случае раскрытия стыка между металлическим уплотнительным кольцом и наружным кольцом подшипника гидравлическое давление, действующее на металлическое уплотнительное кольцо со стороны наружного кольца подшипника, а внутренний диаметр резьбы втулки, закрепленной на цапфе, равен или больше наружного диаметра внутреннего кольца подшипника, а само резьбовое соединение уплотнено резиновым уплотнительным кольцом, размещенным в кольцевых расточках втулки и кольца, и между кольцом и лабиринтным кольцом установлено разрезное упругое кольцо, в свободном состоянии сцентрированное по пояску лабиринтного кольца, цилиндрические поверхности двух графитовых колец, вставленных друг в друга, по которым они контактируют, выполнены с эксцентриситетом по отношению к цилиндрической поверхности внутреннего кольца этой пары, по которой оно контактирует с кольцом, навернутым на втулку, и в качестве пружин, прижимающих сегменты графитовых уплотнительных колец к контактирующему с ними кольцу, применены два кольцевых многослойных гофрированных пакета, набранных «гофр в гофр» из шлифованных стальных нагартованных лент или лент, изготовленных из закаленной нержавеющей стали, причем стыки концов лент равномерно распределены по вершинам гофров, каждый пакет гофрированных лент с радиальным натягом по вершинам гофров, созданным одинаковым одновременным сжатием всех гофров пакета в радиальных направлениях, вставлен в кольцевой зазор между корпусом сегментного контактного уплотнения и тем графитовым уплотнительным кольцом, на которое он опирается, до упора друг в друга и в стенку этого корпуса так, что его вершины располагаются в ответных полукруглых сегментных выемках, выполненных в контактирующих с пакетами деталях, и сегментное контактное уплотнение со стороны предмасляной полости опоры закрыто крышкой и уплотнено резиновыми уплотнительными кольцами, расположенными в кольцевых канавках крышки, и крышка и корпус сегментного уплотнения изготовлены из стали одинаковой марки или бронзы БрС30, причем кольцевой зазор между корпусом сегментного уплотнения и крышкой также меньше 0,1 мм, и в крышке выполнен несквозной паз, в который с суммарным зазором по боковым сторонам паза, меньшим 0,1 мм, входит упор, герметично частью с конической трубной резьбой закрепленный в корпусе сегментного уплотнения и законтренный упругим кольцом, и крышка упругими силами, созданными упругим разрезным кольцом, размещенным в кольцевой канавке корпуса сегментного уплотнения, и давлением воздуха, поступающего в предмасляную полость опоры через отверстия в трубе, цапфе и лабиринтном кольце, прижата полированным торцом к ответным полированным торцам графитных уплотнительных колец, а в бурте корпуса подшипника выполнено дроссельное отверстие, сообщающееся с зазором по периметру паза, выполненного в металлическом уплотнительном кольце.

Изобретение относится к гидравлическому подшипнику для стационарной газовой турбины, содержащему масляную ванну, в которой предусмотрен сток для гидравлического масла, при этом сток содержит расположенное в масляной ванне сточное отверстие и примыкающий к сточному отверстию сточный трубопровод, при этом предусмотрены средства, которые в стекающем гидравлическом масле вызывают в сточном трубопроводе кольцевой поток с центральным воздушным столбом.

Изобретение относится к области авиационного двигателестроения и, в частности, к малоразмерным газотурбинным двигателям с системой смазки и охлаждения подшипников.

Изобретение относится к области машиностроения и касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в маслосистемах авиационных газотурбинных двигателей (ГТД), а также в других устройствах для отделения жидкости от газожидкостной смеси.

Изобретение относится к энергетике. Предложена опора турбины высокого давления, содержащая корпус подшипника с силовыми спицами, закрепленными на корпусе турбины, наружное кольцо подшипника, установленное в корпусе между упорным буртом и гайкой, и роликоподшипник, взаимодействующий с ротором турбины.

Изобретение относится к системе охлаждения газотурбинного двигателя с помощью охлаждающего воздуха. Двухроторный газотурбинный двигатель, содержащий полость наддува опоры компрессора низкого давления, полость наддува опоры компрессора высокого давления и полость наддува опоры турбины, сообщенные через' подвижные уплотнения с газовоздушным трактом двигателя и с полостями маслосистемы, предмасляные полости, сообщенные с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения и форсажную камеру, согласно изобретению содержит систему последовательно сообщенных друг с другом посредством воздуховодов предмасляную полость компрессора низкого давления и предмасляную полость компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектор, содержащий эжектируемую и эжектирующую полости и камеру смешения, при этом эжектируемая полость своим входом сообщена с предмасляной полостью турбины, а выходом - с входом камеры смешения, эжектирующая полость своим входом сообщена с источником питания, а выходом - с входом камеры смешения, причем выход камеры смешения сообщен с входной полостью форсажной камеры.

Изобретение относится к области авиадвигателестроения и касается предохранительного клапана двойного действия, используемого в системе суфлирования масляных полостей подшипниковых опор ротора авиационного газотурбинного двигателя для поддержания заданных режимов давления воздуха в масляных полостях.

Группа изобретений относится к роторным газотурбинным машинам и может быть использована для подачи масла в межроторные подшипники для смазывания и охлаждения их, а также для уменьшения контактных напряжений на телах качения подшипников. Способ подачи масла в межроторный подшипник опоры ротора газотурбинного двигателя включает установку средств (7) направленной подачи масла на внутренний полый вал (5) ротора и подачу масла через вал (5) и сопла (8) средств подачи масла в межроторный подшипник. Средство (7) при подаче через его сопла (8) масла приводится во вращение вместе с валом (5), потоки масла через его выходные отверстия подают перпендикулярно оси подшипника на отражающую поверхность закрепленного на внешнем валу (6) двигателя маслоулавливающего кольца, от которой отраженный поток масла поступает на подшипник в направлении, параллельном оси подшипника. Сопла (8) развернуты в направлении вращения колец (1, 2) подшипника, а окружная скорость (V) подачи масла на маслоулавливающее кольцо находится в интервале от минимального и до максимального значений, выбранных из определенных соотношений. Также заявлено устройство для подачи масла, которое содержит установленные на валу (5) средства (7) направленной подачи масла с выходными соплами (8), имеющими возможность связи с масляной системой двигателя, а также маслоулавливающий козырек (9), предназначенный для задания направления потоку масла. Козырек (9) закреплен на внешнем валу (6), смонтированном на внешнем кольце (1) подшипника, выполнен в виде кольцевой втулки, отверстие которой имеет коническую форму, и размещен у торца подшипника таким образом, что раструб конуса отверстия направлен в сторону подшипника, причем сопла (8) направлены на коническую поверхность маслоулавливающего кольца и имеют регулируемое проходное сечение. Технический результат: повышение срока эксплуатации подшипников опор роторов газотурбинного двигателя за счет оптимальной организации подачи к ним масла, обеспечивающей эффективные смазку и охлаждение подшипника, а также уменьшение контактных напряжений между телами качения подшипника и его внешней обоймой. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей (ГТД) для отделения жидкости от газожидкостной смеси. Подшипник размещен внутри крыльчатки, внутренняя обойма его установлена на выполненном в корпусе соосно крыльчатке цилиндрическом пальце. Наружная обойма подшипника закреплена относительно крыльчатки. По обе стороны подшипника внутри крыльчатки образованы изолированные от ее проточной части камеры, одна из которых со стороны входа в крыльчатку сообщена через выполненные в лопатках радиальные каналы с каналом отвода отсепарированного масла, а другая камера, обращенная к тыльной стороне крыльчатки, через осевой и радиальный каналы, выполненные внутри пальца, сообщена с каналом подвода масла к опорному подшипнику. Изобретение позволяет повысить надежность работы суфлера и сократить расход масла на двигателе. 1 ил.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Устройство для смазки опорного подшипника ротора турбомашины содержит откачивающий насос, всасывающая магистраль которого подключена к сливной магистрали масляной полости. Снаружи масляной полости установлена компенсационная емкость, верхняя полость которой сообщена со сливной магистралью, последняя выполнена из двух автономных трубопроводов, подсоединенных параллельно к масляной полости таким образом, что заборник масла одного из трубопроводов размещен в нижней части полости, а заборник масла другого - выше первого, причем нижняя полость компенсационной емкости сообщена со всасывающей магистралью откачивающего насоса. Осуществление изобретения позволит увеличить КПД турбомашины за счет снижения гидравлических потерь в проточной части корпуса и повысить надежность работы маслосистемы при останове турбомашины. 1ил.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата. Компрессор низкого давления газотурбинного двигателя содержит ротор, передняя и задняя цапфы которого установлены в передней и задней опорах статора соответственно, шарикоподшипник, вспомогательную втулку, шарнирные V-образные механизмы и упорное кольцо. Наружное кольцо шарикоподшипника установлено в его корпусе, соединенном с корпусом передней опоры посредством разъемного соединения, а внутреннее кольцо шарикоподшипника установлено на наружном диаметре вспомогательной втулки. На торце передней цапфы ротора установлено упорное кольцо, соединенное с вспомогательной втулкой посредством расположенных по окружности относительно продольной оси компрессора шарнирных V-образных механизмов. Каждый V-образный механизм образован двумя качалками, соединенными друг с другом посредством шарнирного соединения, при этом в месте их соединения установлен груз, расположенный на диаметре меньшем, чем диаметр внутреннего кольца вспомогательной втулки. Свободные концы качалок соединены со вспомогательной втулкой и упорным кольцом соответственно посредством шарнирных соединений. Изобретение позволяет повысить надежности работы компрессора низкого давления газотурбинного двигателя. 1 ил.
Наверх