Состав для повышения нефтеотдачи пласта



Состав для повышения нефтеотдачи пласта
Состав для повышения нефтеотдачи пласта

 


Владельцы патента RU 2612773:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" (RU)

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пласта, и предназначено для использования при разработке и эксплуатации нефтяных месторождений. Состав для повышения нефтеотдачи пласта, включающий неионогенное и анионоактивное поверхностно-активные вещества - НПАВ и АПАВ, кубовый остаток ректификации бутиловых спиртов - КОРБС, водорастворимый полимер - полиакриламид и минерализованную воду, содержит в качестве НПАВ - неонол АФ9-8 или АФ9-12, в качестве АПАВ - нефтяные сульфонаты, синтезированные на основе экстрактов селективной очистки масляных погонов N-метилпирролидоном или фенолом, полиакриламид с м.м. 1-16⋅106 г/моль и степенью гидролиза от 20 до 30% и минерализованную воду с минерализацией 0,6 - 142 г/л, при следующем соотношении компонентов, масс. %: указанные нефтяные сульфонаты 0,23-1,49, Неонол АФ 9-8 или АФ 9-12 0,13-2,29, КОРБС 0,25-0,84, указанный полиакриламид 0,015-0,087, указанная вода остальное. Технический результат – повышение эффективности вытеснения остаточной нефти после заводнения. 3 табл., 18 пр.

 

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пласта, и предназначено для использования при разработке и эксплуатации нефтяных месторождений.

Существует множество композиций направленных на повышение нефтеотдачи пластов и интенсификацию добычи нефти. Основой для создания нефтевытесняющих составов являются поверхностно-активные вещества (ПАВ) различных классов (в основном анионного или неионогенного типа) в сочетании с различными компонентами (электролитами, спиртами, углеводородами, кислотами и т.д.). Основными направлениями совершенствования химических методов воздействия на пласт являются: снижение стоимости составов за счет использования новых типов ПАВ, обладающих более высокой поверхностной активностью; оптимизация составов (использование смесевых ПАВ, добавление щелочей, электролитов, содетергентов и т.д.) и совершенствование технологий их применения (использование поверхностно-активных полимерсодержащих композиций, предоторочек, «жертвенных» ПАВ и т.д.); снижение себестоимости производства ПАВ, в том числе за счет использования низкокачественного углеводородного.

Одним из возможных типов сырья для получения нефтевытесняющих составов (НС) являются экстракты селективной очистки масляных фракций - крупнотоннажные побочные продукты производства масел, получаемые после очистки масляных погонов селективными растворителями (Капустин В.М и др. Технология переработки нефти. Часть 3. Производство нефтяных смазочных материалов. Учебное пособие. - 2014. - 328 с.; А.А. Гейле и др. Селективные растворители. Разделение и очистка углеводородсодержащего сырья. - СПб.: ХИМИЗДАТ, 2008. - 736 с. ).

Данные по применению НС на основе экстрактов селективной очистки масляных фракций в процессах повышения нефтеотдачи пластов достаточно ограничены. Так, в работе Liu J. и Wang Y. представлены результаты получения НС из экстракта фурфурольной очистки масляного дистиллята. Экстракт содержал 60,5% мас. ароматических углеводородов, сульфирование выполняли с использованием дымящей серной кислоты, полученный продукт содержал 48% активного вещества. Исследования поверхностной активности НС показали, что критическая концентрация мицеллообразования (ККМ) составила 0,25% при межфазном натяжении (МФН) 2,2 мН/м. Добавление к НС карбоната натрия позволяет существенно снизить МФН до величины 10-3 мН/м. На основании проведенных экспериментальных исследований использование НС в процессах повышения нефтеотдачи пластов оценено как перспективное (Liu J. et al. Preparation of Surfactant for Oil Displacing Refined from Furfural Extract Oil // J. Petroleum Science and Technology. - 2011. - Vol. 29. - P. 1317-1323; Wang Y. et al. Study of petroleum sulfonate sodium refining from furfural extract oil // Heilongjiang Petrochemical. - 2000. - №11. - P. 18-20). В работе HUANG Shu-zhou и др. также исследованы экстракты фурфурольной очистки. Исходное сырье было разделено на четыре компонента и просульфировано серной кислотой, для сульфированных продуктов определены средние молекулярные массы и выполнена оценка строения с использованием методов ИК, ЯМР и элементного анализа (HUANG Shu-zhou et al. Study of chemical structure and properties of petroleum sulfonates produced from components of furfural extract of lube oil refining China Surfactant Detergent & Cosmetics, 2010, 06).

Известен способ добычи нефти с использованием композиции на основе нефтяных сульфонатов с меняющимся эквивалентным весом от 280 до 530 (в зависимости от состава и количества ароматических углеводородов в сульфируемом углеводородом сырье - нефти, керосиновой, дизельной или масляной фракций). Нефтяные сульфонаты обеспечивают низкое межфазное натяжение на границах с нефтью и водой и, соответственно, повышают эффективность вытеснения нефти и воды из пласта. Нефтевытесняющая способность применяемого состава зависит от строения, содержания и молекулярного массового распределения нефтяных сульфонатов и может иметь различную эффективность в процессах добычи нефти (например, Foster W.R. Journal of the Petroleum Technology, 1973, Feb., p. 205-210).

Известна композиция для повышения нефтеотдачи пласта, включающая анионное поверхностно-активное вещество (АПАВ) и неионогенное поверхностно-активное вещество (НПАВ), где в качестве АПАВ использованы нефтяные или синтетические сульфонаты с эквивалентной массой от 330 до 580, а в качестве НПАВ - оксиэтилированные алкилфенолы со степенью оксиэтилирования от 8 до 16, и дополнительно содержит растворитель при следующем соотношении компонентов, масс. %: нефтяные или синтетические сульфонаты с эквивалентной массой от 330 до 580-5-90, оксиэтилированные алкилфенолы со степенью оксиэтилирования от 8 до 16 - 5-90, растворитель – остальное (Авт. св №94015252, МПК Е21В 43/22 1996 г.). Недостатками указанных технических решений является необходимость использования углеводородного растворителя и высокая концентрация ПАВ, что увеличивает стоимость реагента.

Наиболее близким к предлагаемому изобретению является способ обработки пласта нефтяных месторождений, в котором в пласт закачиваются, масс. %: водорастворимый полимер 0,004-5,0; алифатический или ароматический спирт 0,5-50; анионный ПАВ или смесь анионного и неионогенного ПАВ 0,5-10,0; ВДГМ 0,1-3,0; соль поливалентного металла 0,003-0,30; ингибитор 0,1-3,0; вода остальное (патент РФ 2367792, Е21В 43/32, опубл. 20.09.2009, бюл. №26). Недостатком данного способа является высокая концентрация ПАВ или смеси ПАВ с более высокой стоимостью, сложность компонентного состава, которая также влияет на конечную стоимость композиции, а также большой объем закачки (1 объем пор) при сопоставимых результатах нефтевытесняющих свойств, предложенного технического решения при закачке от 0 до 0,5 объемов пор.

Задачей настоящего изобретения является разработка состава для повышения нефтеотдачи пласта на основе нефтяных сульфонатов низкой стоимости, позволяющего повысить эффективность вытеснения остаточной (пленочно-капельной) нефти после заводнения и улучшить фильтрацию закачиваемой воды.

Техническим результатом является повышение эффективности вытеснения остаточной нефти после заводнения. Состав для повышения нефтеотдачи пласта включает неионогенное и анионоактивное поверхностно-активные вещества - НПАВ и АПАВ, кубовый остаток ректификации бутиловых спиртов - КОРБС, водорастворимый полимер - полиакриламид и минерализованную воду, отличающийся тем, что содержит в качестве НПАВ - неонол АФ9-8 или АФ9-12, в качестве АПАВ - нефтяные сульфонаты, синтезированные на основе экстрактов селективной очистки масляных погонов N-метилпирролидоном или фенолом, полиакриламид с м.м. 1-16⋅106 г/моль и степенью гидролиза от 20 до 30% и минерализованную воду с минерализацией 0,6-142 г/л, при следующем соотношении компонентов, масс. %:

Указанные нефтяные сульфонаты 0,23-1,49
Неонол АФ 9-8 или АФ 9-12 0,13-2,29
КОРБС 0,25-0,84
Указанный полиакриламид 0,015-0,087
Указанная вода остальное

Заявляемое соотношение компонентов состава для повышения нефтеотдачи пласта на основе нефтяных сульфонатов низкой стоимости повышает эффективность извлечения (пленочно-капельной) нефти после заводнения и улучшает фильтрацию закачиваемой воды.

Содержание компонентов в составе зависит от геолого-физических характеристик месторождения, физико-химических свойств нефти, пластовой и закачиваемой воды. Оценку эффективности составов проверяют в лабораторных условиях по эффективности вытеснения остаточной после заводнения нефти. При этом моделируются пластовые температуры, керн насыщается пластовой водой, нефтью, составы готовятся на закачиваемой воде.

Разработанный состав для повышения нефтеотдачи пласта представляет собой прозрачную слегка опалесцирующую жидкость.

Для приготовления состава в качестве неионогенного ПАВ выбраны неонолы АФ 9-12 или АФ 9-8 по ТУ 2483-077-05766801-98. Неонолы - оксиэтилированные нонилфенолы, техническая смесь изомеров оксиэтилированных алкилфенолов на основе тримеров пропилена следующего состава C9H19C6H4O(C2H4O)nH (где n - 12,8) являются наиболее доступными из неионных ПАВ.

В качестве анионного ПАВ используют нефтяные сульфонаты, синтезированные на основе экстрактов селективной очистки масел и сырых масляных погонов N-метилпирролидоном или фенолом со средней молекулярной массой от 480 до 550 г/моль.

Кубовый остаток ректификации бутиловых спиртов - побочный продукт оксосинтеза, применяемого при производстве технических бутиловых спиртов. ТУ 2421-101-05766575-2001.

В качестве водорастворимого полимера используют гидролизованные полиакриламиды (ПАА) [-CH2CH(CONH2)-]n. Твердое аморфное белое или прозрачное вещество без запаха с м.м. 1-16⋅106 г/моль и степенью гидролиза от 20 до 30%, как отечественного производства, например марки АК-631, выпускающееся ООО «Саратовский химический завод акриловых полимеров «Акрипол»», г. Саратов, или зарубежного производства, например полимер марки FP-3630S производства Франции, или марки П-314 производства КНР.

В качестве растворителя использована минерализованная вода с минерализацией от 0,6 до 142 г/л.

Для синтеза анионных ПАВ (нефтяных сульфонатов) были использованы четыре экстракта селективной очистки масляных фракций:

SRN-2 - экстракт установки селективной очистки N-метилпирролидоном (N-МП) (II погон); SRN-3 - экстракт установки селективной очистки N-метилпирролидоном (N-МП) (III погон); SRP-2 - экстракт фенольной очистки (II погон); SRP-3 - экстракт фенольной очистки (III погон). Синтез технических НС проходил по двум стадиям: сульфирование и нейтрализация. Обе стадии проводились при непрерывном перемешивании и охлаждении. Выбор условий синтеза и соотношение сульфирующий агент/экстракт выполняли в соответствии с рекомендациями работы Liu J. и Wang Н. (Liu J., Wang H. et. al. Preparation of Surfactant for Oil Displacing Refined from Furfural Extract Oil // J. Petroleum Science and Technology. - 2011. - Vol. 29. - P. 1317-1323).

В трехгорлую колбу, снабженную воздушным холодильником, механической мешалкой и капельной воронкой, загружали исходный экстракт. При охлаждении (температура не выше 60°С) и перемешивании добавляли сульфирующий агент (олеум) при соотношении 0,45/1 мас. (сульфирующий агент/экстракт). Далее смесь выдерживали 45 мин и добавляли концентрированный водный раствор аммиака. В результате образовывалась смесь аммонийных солей аренсульфокислот в виде вязкой жидкости коричневого цвета.

Для сульфированных и нейтрализованных экстрактов определена концентрация активных компонентов, несульфированных масел, воды и неорганических солей. Количество воды определяли по потере массы навески НС при нагревании и выдержке при 105°С. Неорганические соли отделяли в виде осадка, нерастворимого в хлороформе. Несульфированные масла выделяли с использованием хроматографической колонки, заполненной силикагелем АСК, содержащим по массе 15% воды. В качестве элюентов применялись хлороформ и смесь «этиловый спирт - аммиак». Определение средней молекулярной массы НС выполняли с использованием метода двухфазного титрования.

В табл. 1 представлен компонентный состав сульфированных экстрактов и средняя молекулярная масса выделенных ПАВ. Концентрация ПАВ в сульфированных экстрактах составляет от 21 до 32,5% масс, содержание воды составляет 20,8-23,6% масс. Наибольшая концентрация несульфированных углеводородов характерна для образцов SRN-3 и SRP-2 (39,6 и 41,0% масс. соответственно). Более высокая молекулярная масса характерна для сульфированных экстрактов III масляных погонов (548 г/моль для SRP-3 и 647 г/моль для SRN-3) по сравнению с экстрактами II масляных погонов (408 г/моль для SRP-2 и 482 г/моль для SRN-2).

На основании данных, представленных в табл. 1, можно заключить, что наибольшее количество ПАВ содержат образцы SRN-2 и SRP-3 (при одинаковых условиях сульфирования) и они должны проявлять наибольшую поверхностную активность. Полученные НС растворимы в дистиллированной воде (до 4% масс.) и углеводородах (керосине). При растворении в водной фазе НС III масляных погонов наблюдается повышение мутности водного раствора ПАВ. Таким образом, использование экстрактов селективной очистки масляных фракций в качестве сырья для синтеза НС позволяет получить водорастворимые технические ПАВ с различной средней молекулярной массой.

Определение межфазного натяжения и критической концентрации мицеллообразования (ККМ) выполняли для синтезированных ПАВ после хроматографического разделения на границе раздела «углеводород - поверхностно-активный состав» с использованием видеотензиометра по методу вращающейся капли SVT-15N (Data Physics). В качестве углеводорода использован керосин по ГОСТ 10227-86, приготовление составов выполняли с использованием дистиллированной воды по ГОСТ 6709-72.

В табл. 2 представлена Критическая концентрация мицеллообразования (ККМ) и МФН в точке ККМ.

Все исследованные НС обладают высокой поверхностной активностью, но различаются величинами ККМ и МФН в точке ККМ. Исходное МФН межфазное натяжение на границе «керосин-вода» составляет 27 мН/м, добавление НС к водному раствору снижает МФН в 23-82 раза. Наименьшая ККМ характерна для образцов SRP-3 (0,0137 моль/л) и SRN-2 (0,0207 моль/л), минимальным МФН обладает образец SRN-2 (0,33 мН/м). Таким образом, из исследованных НС наибольшую поверхностную активность проявляют образцы на основе экстракта II масляного погона N-MP очистки и экстракта III масляного погона фенольной очистки.

Для керновых исследований во всех случаях, с целью удешевления составов, использованы неочищенные анионные ПАВ (сульфированные и нейтрализованные углеводородные фракции), при приготовлении составов не использовались углеводородные растворители.

Примеры 1-4. Для приготовления составов использованы НС 0,55-1,49 масс. %, полученные из экстракта селективной очистки II-го масляного погона фенолом (SRP-2), в сочетании с неонолом марки АФ 9-8 или АФ 9-12 0,51 масс. %, КОРБС 0,25 масс. %, ПАА 0,043-0,048 масс. % и минерализованной водой 0,6-142 г/л 97,707-98,642 масс. %.

Примеры 5-10. Отличие данных составов от ранее описанных в том, что для их приготовления использованы нефтяные сульфонаты из экстрактов селективной очистки II-го погона N-МП (SRN-2) 0,43-1,03 масс. %. В качестве других компонентов использованы: неонол марки АФ 9-8 или АФ 9-12 0,13-0,32 масс. %; КОРБС 0,35-0,84 масс. %; ПАА 0,036-0,087 масс. %; минерализованная вода 14,4 г/л 97,723-99,054 масс. %.

Примеры 11-14. Отличие данных составов от ранее описанных в том, что для их приготовления использованы нефтяные сульфонаты из экстрактов селективной очистки III-го масляного погона фенолом (SRP-3) 0,43-0,70 масс. %. В качестве других компонентов в составах использованы: неонол марки АФ 9-8 или АФ 9-12 0,25-0,40 масс. %; КОРБС 0,25-0,50 масс. %; ПАА 0,026-0,042 масс. %; минерализованная вода 142 г/л 98,608-98,794 масс. %.

Примеры 15-18. Отличие данных составов от ранее описанных в том, что для их приготовления использованы нефтяные сульфонаты из экстрактов селективной очистки III-го погона N-МП (SRN-3) 0,23-0,97 масс. %. В качестве других компонентов в составах использованы: неонол марки АФ 9-8 или АФ 9-12 0,51-2,29 масс. %; ПАА 0,015 масс. %; КОРБС 0,25 масс. %; минерализованная вода 142 г/л 96,475-98,995 масс. %.

Эффективность составов в вытеснении остаточной нефти после заводнения керна проводили на насыпных моделях керна (длина 20-34 см и диаметром 1.4-2.0 см с измерением давления на входе и в середине модели). Испытания составов проводились на насыпных песчаных (П), смеси песка с 5% доломита (ПД-5) или с 5% бентонитовой глины (ПГ-5) кернах проницаемостью от 1,5 до 3,4 мкм с остаточной нефтенасыщенностью (моделирование поздней стадии заводнения нефтью пласта) по технологии: насыпную модель насыщают пластовой водой, затем нефтью до неснижаемой водонасыщенности и закачиваемой водой до остаточной нефтенасыщенности (имитация процесса заводнения). Затем в насыпную модель керна закачивают испытываемый состав, буферную полимерную оторочку (БПО, в некоторых экспериментах оторочку не использовали, указано в табл. 3.) и три объема пор закачиваемой воды. Составы готовились на закачиваемой воде, а их эффективность проверялась при различных температурах.

Нефтевытесняющую способность определяли по отношению количества нефти, вытесненной реагентом (составом), к количеству нефти, оставшейся после заводнения модели (Δηн, % от остаточной нефти), а реологические свойства - по остаточному фактору сопротивляемости (Рост) в средней точке модели при прокачке закачиваемой воды после реагентов, рассчитываемого по формуле

Рост=Р/Р0,

где Р0 и Р - давление в средней точке керна при прокачке воды до и после закачки реагентов, атм.

В табл. 3 представлены результаты лабораторного испытания на нефтевытесняющую способность составов на основе нефтяных сульфонатов, полученных из масляных экстрактов и погонов.

С целью снижения стоимости составов испытаны низкоконцентрированные композиции с содержанием НС не более 1,5% мас.

Из представленных данных видно, что все испытанные составы являются эффективными в вытеснении остаточной после заводнения нефти. Вытеснение остаточной нефти зависит от типа использованного сырья для получения НС и их концентрации, наличия в составе и соотношения содетергентов (оксиэтилированных нонилфенолов и КОРБС), состава и объема буферной оторочки, температуры, минерализации воды (закачиваемой и пластовой) и физико-химических свойств нефти. Полученные результаты свидетельствуют о том, что наибольшая эффективность характерна для составов на основе экстрактов селективной очистки масляных погонов N-метилпирролидоном (II погон) или фенолом (II погон).

Таким образом, сопоставление результатов экспериментов показывает, что составы на базе экстрактов селективной очистки масляных погонов являются не менее эффективными, чем составы с использованием нефтяных сульфонатов полученных из масляных дистиллятов, обладая при этом низкой стоимостью. С учетом более низкой стоимости экстрактов по сравнению с масляными фракциями применение данных нефтяных сульфонатов является перспективным.

Состав для повышения нефтеотдачи пласта, включающий неионогенное и анионоактивное поверхностно-активные вещества - НПАВ и АПАВ, кубовый остаток ректификации бутиловых спиртов - КОРБС, водорастворимый полимер - полиакриламид и минерализованную воду, отличающийся тем, что содержит в качестве НПАВ - неонол АФ9-8 или АФ9-12, в качестве АПАВ - нефтяные сульфонаты, синтезированные на основе экстрактов селективной очистки масляных погонов N-метилпирролидоном или фенолом, полиакриламид с м.м. 1-16⋅106 г/моль и степенью гидролиза от 20 до 30% и минерализованную воду с минерализацией 0,6 - 142 г/л, при следующем соотношении компонентов, масс. %:

Указанные нефтяные сульфонаты 0,23-1,49
Неонол АФ 9-8 или АФ 9-12 0,13-2,29
КОРБС 0,25-0,84
Указанный полиакриламид 0,015-0,087
Указанная вода остальное



 

Похожие патенты:

Изобретение относится к способу блокирования потока масляно-водной текучей среды с соотношением вода:масло, равным 70:30, через по меньшей мере один проход в подземной формации, через которую проходит ствол скважины, в котором осуществляют: (i) выбор композиций, концентраций и размеров жестких волокон, гибких волокон и твердых тампонирующих частиц; (ii) приготовление масляно-водной текучей среды, в которую добавляют волокна и частицы; и (iii) нагнетание блокирующей масляно-водной текучей среды в проход, при этом волокна образуют сетку поперек прохода, а твердые частицы тампонируют сетку, блокируя поток, причем жесткие волокна имеют диаметр от 20 мкм до 60 мкм и длину от 2 мм до 12 мм, при этом гибкие волокна имеют диаметр от 8 мкм до 19 мкм и длину от 2 мм до 12 мм.

Группа изобретений относится к использованию буферных жидкостей в подземных пластах. Технический результат – повышение эффективности вытеснения жидкости в стволе скважины буферной жидкостью перед введением другой жидкости, улучшение удаления твердых веществ, разделение физически несовместимых жидкостей.

Настоящее изобретение относится к повышению нефтедобычи, когда углеводороды не протекают под действием естественных сил. Дисперсия для повышения нефтедобычи, содержащая диоксид углерода в жидком или сверхкритическом состоянии, разбавитель из группы, состоящей из воды, соляного раствора, реликтовой воды, поверхностной воды, дистиллированной воды, воды, обогащенной углекислотой, морской воды и их сочетаний и неионное поверхностно-активное вещество, получаемое реакцией алкоксилирования первого эпоксида, второго эпоксида, отличного от первого эпоксида, и группы первичного алифатического амина, ковалентно связанного с третичным атомом углерода С4-С30 разветвленного алкилмоноамина.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта при наличии попутной и/или подошвенной воды.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам гидромеханического упрочнения ствола в процессе бурения скважин различного назначения.

Настоящее изобретение относится к области добычи газа и конденсата газового, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений (ГМ) и газоконденсатных месторождений (ГКМ), в продукции которых содержится высокоминерализованная пластовая вода (общая минерализация 50-200 г/л) и высокое содержание УВК до 50%.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - сокращение времени бурения, сохранение устойчивости бурового раствора, охрана окружающей среды с одновременным уменьшением стоимости бурового раствора.

Изобретение относится к жидкостям для гидроразрыва подземных пластов при добыче углеводородов. Способ выбора поверхностно-активного вещества (ПАВ) для применения в жидкости для гидроразрыва при обработке подземного пласта, содержащий обеспечение по меньшей мере двух ПАВ, взятие пробы воды из обрабатываемого пласта, взятие пробы неочищенной нефти из обрабатываемого пласта, взятие керна из обрабатываемого пласта, выбор проппанта для применения в обрабатываемом пласте, смешивание каждого из ПАВ с указанной пробой воды с созданием образцов смеси ПАВ и указанной пробы воды, определение растворимости ПАВ для каждого указанного образца смеси ПАВ и пробы воды и присвоение показателя качества по растворимости каждому ПАВ, определение динамического поверхностного натяжения ПАВ для каждого указанного образца смеси ПАВ и пробы воды и присвоение показателя качества по динамическому поверхностному натяжению каждому ПАВ, смешивание каждого из ПАВ с указанной пробой нефти с созданием образцов смеси ПАВ и указанной пробы нефти, определение поверхностного натяжения на границе раздела фаз между растворами ПАВ и неочищенной нефтью для каждого ПАВ и пробы нефти и присвоение показателя качества по поверхностному натяжению на границе раздела фаз каждому ПАВ, определение способности создавать эмульсию растворами ПАВ и неочищенной нефтью для каждого ПАВ и пробы нефти и присвоение показателя качества по способности создавать эмульсию каждому ПАВ, прокачивание раствора каждого из ПАВ через насыщенный пробой неочищенной нефти измельченный указанный керн с получением эффлюента, определение нефтеотдачи для каждого ПАВ по эффлюенту и присвоение показателя качества по нефтеотдаче каждому ПАВ, определение в указанном керне капиллярного давления для каждого ПАВ и присвоение показателя качества по капиллярному давлению каждому ПАВ, определение адсорбции на выбранном проппанте для каждого ПАВ и присвоение показателя качества по адсорбции на выбранном проппанте каждому ПАВ, суммирование для каждого ПАВ полученных показателей качества по меньшей мере по двум указанным выше характеристикам и выбор ПАВ с наибольшим значением суммы показателей качества.

Группа изобретений относится к нефтяной промышленности. Технический результат - повышение эффективности воздействия на пласт путем исключения загрязнения призабойной зоны пласта вторичными осадками за счет стабилизации ионов трехвалентного железа, увеличение проникающей способности кислотного состава за счет снижения межфазного натяжения на границе с нефтью, увеличение текущей нефтеотдачи пласта.

Изобретение относится к нефтедобывающей промышленности. Технический результат - снижение энергетических затрат путем сокращения объемов закачки пара в пласт, увеличение дебита в 2-2,5 раза с разрабатываемого участка залежи высоковязкой и сверхвязкой нефти на поздней стадии разработки, предотвращение техногенных обрушений горных пород над выработанной залежью.

Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонтно-водоизоляционным работам в нефтяных и газовых скважинах. Технический результат - обеспечение изоляции воды в коллекторах любой проницаемости, их закрепление в прискважинной зоне пласта, ликвидация заколонных перетоков, ликвидация притока подошвенных вод установкой экрана в плоскости, ремонт эксплуатационных колонн. Состав для ремонтно-изоляционных работ в скважинах, включающий микродур R-U, полифункциональный модификатор PFM-ISO, суперпластификатор F-10 и воду при водоцементном отношении 1 при следующем соотношении компонентов, мас. %: микродур R-U 48,75-49,05, полифункциональный модификатор PFM-ISO 1,0-1,2%, суперпластификатор F-10 0,9-1,3%, вода - остальное. 7 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. В способе изготовления магнийсиликатного проппанта, содержащего 18-30 мас. % MgO, из сырья на основе природного магнийсодержащего компонента и кварцполевошпатного песка, включающем предварительный обжиг природного магнийсодержащего компонента, его помол с кварцполевошпатным песком, грануляцию материала, обжиг сырцовых гранул и их рассев, в качестве природного магнийсодержащего компонента используют серпентинит Баженовского месторождения, содержащий в пересчете на прокаленное вещество, мас. %: SiO2 38-46; MgO 38-46; Fe2O3 6-12; СаО 0,2-2,1; Аl2O3 0,05-1,1; Cr2O3 0,2-0,7; NiO 0,1-0,45; MnO 0,05-0,25; K2O 0,002-0,2; Na2O 0,06-0,5; микропримеси – остальное, предварительный обжиг указанного серпентинита и обжиг сырцовых гранул производят со скоростью подъема температуры более 150°C/ч. Магнийсиликатный проппант характеризуется тем, что он получен указанным выше способом. Технический результат - увеличение коэффициента восстановления проппанта при сохранении его прочностных характеристик 2 н.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва продуктивного пласта, содержащего прослой глины с газоносным горизонтом. Способ включает выполнение перфорации в интервале продуктивного пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение гидравлического разрыва пласта (ГРП) закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины, распакеровку пакера и его извлечение с колонной НКТ из скважины. Ориентированную перфорацию производят с помощью гидромеханического перфоратора с ориентирующим переводником, процесс ГРП начинают с закачки гидроразрывной жидкости, в качестве которой используют сшитый гель для создания трещины в продуктивном пласте. После чего созданную трещину развивают закачкой линейного геля плотностью 1150 кг/м3 сначала со сверхлегким проппантом фракции 40/80 меш с концентрацией 200 кг/м3, а затем с кварцевым мелкозернистым песком с размером зерен 0,1-0,25 мм концентрацией 600 кг/м3. После чего производят крепление трещины закачкой сшитого геля с проппантом фракцией 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта порциями со ступенчатым увеличением концентрации проппанта на 100 кг/м3, начиная от 200 кг/м3 до 800 кг/м3, последней порцией закачивают RCP-проппант с концентрацией 900 кг/м3. При этом в продуктивном пласте с проницаемостью от 0,01 до 100 мД при креплении трещины закачивают сшитый гель с проппантом фракции 20/40 меш, а в продуктивном пласте с проницаемостью от 100 до 500 мД при креплении трещины закачивают сшитый гель с проппантом 12/18 меш. Технический результат заключается в: повышении надежности создания и развития трещины; повышении эффективности способа; снижении гидравлических сопротивлений в интервале перфорации; повышении качества крепления трещины в призабойной зоне пласта и исключении выноса проппанта в скважину при последующем освоении. 4 ил.
Изобретение относится к нефтегазодобывающей промышленности, а именно к бурению горизонтальных стволов большой протяженности, связанного с развитием кустового бурения и, в том числе, со строительством скважин в условиях Крайнего Севера и континентального шельфа. Способ предназначен для бурения горизонтальных стволов скважин большой протяженности в условиях поглощения буровых растворов. Технический результат - уменьшение коэффициента трения бурильной колонны о стенки скважины, поглощения промывочной жидкости и гидравлического прижатия бурильной колонны к стенкам скважины за счет ввода в буровой раствор универсального физико-химического компонента. По способу в буровой раствор, минуя систему очистки, вводят упругий механический наполнитель. Этот наполнитель выполняют в виде резиновой крошки с гидрофильной поверхностью и эффективным диаметром ее частиц, большим 1/3 поперечного размера трещин и пор. Таким образом подготовленный наполнитель – резиновую крошку обрабатывают абсорбирующим маслом. Сверху по маслу резиновую крошку обрабатывают мылом с возможностью образования антифрикционного покрытия, обеспеченного химическими связями с этой крошкой.

Изобретение относится к эмульгаторам инвертных эмульсий и может быть использовано при получении однородной смеси двух несмешивающихся жидкостей, таких как нефть и вода, применяющихся в нефтедобывающей промышленности для увеличения нефтеотдачи пластов на поздней стадии разработки. Описан эмульгатор инвертных эмульсий, содержащий маслорастворимое поверхностно-активное вещество в виде оксиэтилированного алкилфенола АФ9-6, жирную кислоту в соотношении 2:1 и углеводородный растворитель, при этом эмульгатор содержит в качестве жирной кислоты олеиновую кислоту, а в качестве углеводородного растворителя - бензолсодержащую фракцию, причем суммарная концентрация оксиэтилированного алкилфенола АФ9-6 и олеиновой кислоты в эмульгаторе составляет 15-39%, остальное - углеводородный растворитель. Технический результат – упрощение процесса приготовления эмульгатора, повышение агрегативной устойчивости эмульсий, улучшенная технологичность процесса и сокращение материальных затрат. 3 табл.

Настоящее изобретение относится к способу гидравлического разрыва подземного пласта. Способ гидравлического разрыва водным раствором несшитого полимера, включающий введение в ствол скважины водной текучей среды для гидравлического разрыва, содержащей полиэтиленоксид – ПЭО, в качестве агента снижения трения и неионный полимер - НП, и снижение трения водной текучей среды для гидравлического разрыва, когда указанная среда закачивается в ствол скважины, где НП защищает ПЭО от сдвигового разложения и где указанную среду вводят в ствол скважины при давлении, достаточном для создания или расширения гидравлического разрыва в подземном пласте, и массовое соотношение ПЭО и НП составляет от 1:20 до 20:1, и препятствование сдвиговому разложению ПЭО из-за турбулентного потока указанной среды. Способ снижения сдвигового разложения ПЭО при введении водной текучей среды, содержащей ПЭО, в ствол скважины, включающий введение указанной среды, дополнительно содержащей НП, и снижение трения указанной среды, где НП препятствует сдвиговому разложению, и воздействие на ПЭО сдвиговым усилием, где НП защищает ПЭО от разрушения, где массовое соотношение ПЕО и НП в указанной среде от 20:1 до 1:20 и количество ПЭО составляет от 20 частей на миллион до 100 частей на миллион. Способ гидравлического разрыва, включающий введение в ствол скважины водной текучей среды для гидравлического разрыва и снижение трения указанной среды, где указанная среда состоит из воды, смеси, включающей ПЭО и НП, расклинивающего наполнителя, агента, препятствующего набуханию, или как расклинивающего наполнителя, так и агента, препятствующего набуханию, где среду вводят в при давлении, достаточном для создания или расширения гидравлического разрыва в подземном пласте, и где массовое соотношение ПЭО и НП составляет от приблизительно 1:5 до приблизительно 5:1, и препятствование сдвиговому разложению ПЭО с помощью НП. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности снижения трения. 3 н. и 18 з.п. ф-лы, 3 ил.,3 пр.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств и улучшение структурных показателей бурового раствора. Катионный буровой раствор включает, мас.%: глинопорошок 3-5; полидадмах 1,75-2,10; структурообразователь - катионный полимер Росфлок КФ 0,5-2; воду остальное. 2 табл.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях. Технический результат - повышение крепящих свойств раствора и сохранение устойчивости (целостности) стенок ствола скважины. Катионный буровой раствор включает, мас.%: глинопорошок 3-5; полидадмах 1,05-2,10; крахмал или декстрин 0,5-3,0; в качестве дополнительного структурообразователя катионный полимер Росфлок КФ 0,5-2; воду - остальное. 2 табл., 1 ил.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях. Технический результат - повышение крепящих свойств раствора и сохранение устойчивости стенок ствола скважины при одновременном снижении расхода полидадмаха. Катионный буровой раствор содержит, мас.%: глинопорошок 3-5; полидадмах 1,05-2,10; в качестве структурообразователя - катионный полимер Росфлок КФ 0,5-2; неионный эфир целлюлозы 0,2-0,5; воду остальное. 1 ил., 2 табл.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение селективности растворения кислоторастворимых минералов терригенного коллектора и осадкоудерживающей способности. Состав для кислотной обработки призабойной зоны пласта содержит, мас.%: уксусную кислоту 15,0-40,0; фтористоводородную кислоту 1,0-3,0; тетранатриевую соль этилендиамин-N, N, N', N'-тетрауксусной кислоты трилон В 0,5-4,0; тринатриевую соль N-(гидроксиэтил) этилендиаминтриуксусной кислоты трилон D 1,5-6,0; аммоний хлористый 3,0-7,0; N-лаурил-β-иминодипропионат натрия Deriphat 160 С 0,5-2,0; ингибитор коррозии 2,0-6,0; воду остальное. 2 ил., 3 пр.
Наверх