Катализатор для отверждения модифицированного связующего на основе новолачных смол

Изобретение относится к катализатору для ускорения отверждения новолачных смол, модифицированных пропаргилгалогенидом, содержащему в качестве никельорганического соединения 0,01-0,5 мольный % раствор 2-этилгексаноата никеля в кетоновом растворителе. Изобретение позволяет уменьшить мощность тепловыделения при сохранении низкой температуры отверждения, а также устойчивость хранения его на воздухе. 1 табл., 2 ил.

 

Область техники.

Изобретение относится к катализатору для отверждения модифицированного связующего на основе новолачных смол и может быть использовано для производства полимерных композиционных материалов путем прессования или литья под давлением.

Предшествующий уровень техники.

Связующие на основе модифицированных новолачных смол полимеризуются (отверждаются) в температурном интервале от 180 до 300°C с выделением тепла.

Высокая температура отверждения композиционного материала на основе таких связующих определяет следующие характеристики технологического процесса:

- высокое энергопотребление;

- необходимость использования термостойкого оборудования (оснасток);

- ввиду экзотермичности процесса существует возможность перегрева изделия в процессе отверждения до температуры термической деструкции связующего (400°C).

Для отверждения этих связующих применяются катализаторы, ускоряющие процесс отверждения.

Отверждение новолачных смол (особенно ортоноволаков) происходит быстрее, чем резольных смол, причем для ортоноволаков характерны наибольшая скорость и глубина отверждения.

Возможно также применение и других катализаторов, так, для новолачных и резольных смол, модифицированных пропаргилгилом применяют полиэтиленполиамин (см. SU 248214).

Кроме того, для этих же целей достаточно хорошо зарекомендовал себя бис-трифенилфосфиновый комплекс хлорида никеля (см. POLYMER, 1993, Volume 34, Number 7, 1544-1545), который был применен для полимеризации дипропаргилового эфира бисфенола А - который является близким низкомолекулярным аналогом новолачной смолы, модифицированной пропаргилхлоридом.

Однако к его недостаткам можно отнести высокую мощность тепловыделения. К другим недостаткам данного катализатора можно отнести его низкую устойчивость при хранении на воздухе, и соответственно, необходимость использования связующего с катализатором в короткий срок после изготовления.

Раскрытие изобретения.

Задачей изобретения является уменьшение мощности тепловыделения при сохранении низкой температуры отверждения, а также устойчивость хранения его на воздухе.

Поставленная задача решается катализатором для ускорения отверждения новолачных смол, модифицированных пропаргилгалогенидом, содержащий никельорганическое соединение, отличающийся тем, что в качестве никельорганического соединения он содержит 0,001-0,5 мольный % раствор 2-этилгексаноата никеля в кетоном растворителе.

Техническая сущность изобретения.

На фиг. 1 приведена кривая ДСК отверждения смолы марки СТН 150 (новолачная смола, модифицированная пропаргилгалогенидом).

Как следует из приведенных на фиг. 1 данных, связующее полимеризуются (отверждается) в температурном интервале от 180 до 300°C с выделением тепла

Для создания изобретения были опробованы катализаторы, смещающие пик отверждения на кривой ДСК в низкотемпературную область.

Предполагалось, что такими катализаторами могут быть октоаты (этилгексаноаты) переходных металлов (коммерческие продукты, используются как сиккативы в лакокрасочной промышленности), общей формулы [СН3(СН2)3СН(С2Н5)CO2]хМ, где М=Ni (II), Со (II), Cu (II), Sn (II), Mn (II) при х=2; М=Се (III), Fe (III), Cr (III) при x=3:

где M=Ni, Со, Cu, Sn, Mn. Б)

На фиг. 2 приведены кривые ДСК, демонстрирующие влияние добавки 0,5 мольных % октоатов (этилгексаноатов) переходных металлов на параметры отверждения смолы СТН.

Как следует из этих данных, этилгексаноаты переходных металлов снижают температуру начала отверждения, то есть позволяют проводить процесс отверждения композита при более низких температурах. Наиболее сильно снижают температуру начала отверждения 2-этилгексаноаты меди и никеля.

Однако только 2-этилгексаноат никеля не только снижает температуру отверждения, но и позволяет снизить скорость тепловыделения.

В случае этилгексаноата никеля происходит «размазывание» пика (фиг. 2), то есть снижение скорости тепловыделения (мощности) при отверждении при сохранении общего количества выделенного тепла. В этом случае можно говорить о том, что экзотермичность процесса становится легче контролировать, так как саморазогрев происходит менее эффективно, и количество избыточного тепла в единицу времени становится меньше.

Огромную роль в достижении декларируемого технического результата также играет вид растворителя.

В нашем случае используются растворители кетонной природы, способные сольватировать ионы никеля, что способствует более равномерному распределению катализатора в объеме смолы.

Эффект растворителя состоит в том, что за счет сольватирующей способности вышеозначенные кетоны сольватируют соль никеля, образуют комплекс донорно-акцепторного типа с делокализацией спиновой плотности иона никеля на карбонильной группе [Driessen, W. L.; Groeneveld, Willem L. From Recueil des Travaux Chimiques des Pays-Bas (1971), 90(3), 258-64; Jackowski, K.; Kecki, Z. Inst. Nucl. Phys., Cracow, Rep. (1973), (No. 819/PL)(Pt. 2), 192-9].

К данной группе относятся следующие растворители: ацетон, метилэтил кетон, диэтилкетон, дибутил кетон.

Параметры содержания 2 - этилгексаноата никеля выбраны из следующих соображений. Положительное воздействие начинается с его содержания в растворе от 0,01 мольных %, при меньших количествах эффект снижения скорости тепловыделения малозаметен. При содержании 0,5 мольных % 2-этилгексаноата никеля, удельная мощность тепловыделения достигает насыщения, следовательно, дальнейшее увеличение содержания катализатора в растворе не эффективно.

Пример осуществления изобретения.

Катализатор отверждения, представляющий собой 0,5% раствор 2-этилгексаноата никеля в метилэтил кетоне, добавляли к смоле марки СТН 150 в соответствии с ТУ 2226-001-00044977-2014 на «СМОЛЫ ТЕПЛОСТОЙКИЕ НЕНАСЫЩЕННЫЕ МАРКИ СТН». Для этого смолу растворяли в растворе катализатора в метилэтил кетоне в соотношении 1,4 кг раствора катализатора на 1 кг смолы СТН, перемешивали до полного растворения и охлаждали.

Далее смолу подвергали испытаниям, для чего методами дифферинциально сканирующей калориметрии определяли температуру начала полимеризации, температуру пика и удельную мощность тепловыделения.

Соответственно, величина этих параметров составила: 135°C, 199°C и 1,3 мВт/мг.

В соответствии с данным примером, также были приготовлены и испытаны катализаторы с другими содержанием 2-этилгексонаноата никеля (растворитель ацетон). Данные испытаний приведены в таблице 1.

Как следует из представленных данных, достигается не только снижение температуры отверждения, но и удельной мощности тепловыделения.

Окисление смолы с катализатором на воздухе не происходит после 30 суток хранения при комнатной температуре.

Катализатор для ускорения отверждения новолачных смол, модифицированных пропаргилгалогенидом, содержащий никельорганическое соединение, отличающийся тем, что в качестве никельорганического соединения он содержит 0,01-0,5 мольный % раствор 2-этилгексаноата никеля в кетоновом растворителе.



 

Похожие патенты:

Изобретение относится к модифицированному связующему, которое может быть использовано для производства полимерных композиционных материалов путем прессования или литья под давлением, а также способу его получения.
Изобретение относится к области получения полимерных материалов, а именно к производству этерифицированных дифенилолпропанформальдегидных олигомеров. .

Изобретение относится к химии поликонденсационных полимеров, а именно к получению этерифицированных спиртами резольных фенолоформальдегидных олигомеров. .

Изобретение относится к химии конденсационных полимеров, а именно к способу получения модифицированных резольных фенолформальдегидных олигомеров. .

Изобретение относится к химии поликонденсационных полимеров, а именно к получению этерифицированных спиртами резольных фенолформальдегидных олигомеров, предназначенных для использования в лакокрасочных композициях.
Изобретение относится к адгезивной системе, к способу получения продукта из материала на основе древесины, к продукту, а также к применению адгезивной системы. Адгезивная система содержит следующие компоненты: (a) смоляной компонент, содержащий аминосмолу на основе мочевины, у которой отношение F/NH2 составляет от 0,3 до 0,65, (b) отверждающий компонент, представляющий собой, по меньшей мере, одну кислоту, кислотообразующую соль или кислую соль, и (c) водную дисперсию, по меньшей мере, одного полимера - поливинилацетата или полиэтиленвинилацетата.
Изобретение относится к пенопласту на основе фенольных смол и его применению. Пенопласт изготавливается по меньшей мере с применением следующих стадий: а) изготовление преполимера путем конденсации по меньшей мере фенольного соединения и формальдегида в соотношении 1:1,0-1:3,0 с применением 0,15-5 мас.% от количества используемого сырья основного катализатора при температуре от 50 до 100°C с получением коэффициента преломления реакционной смеси 1,4990-1,5020, измеренного при 25°C в соответствии с DIN 51423-2; б) добавка от 5 до 40 мас.% от количества используемого сырья по меньшей мере одного натурального полифенола при температуре от 50 до 100°C; в) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких эмульгаторов и их смесей; г) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких порообразователей и их смесей; д) добавка от 10 до 20 мас.% от количества используемого сырья отвердителя и е) отверждение.

Настоящее изобретение относится к фенолоальдегидной смоле, поперечно-сшитой по мета-положениям, в которой поперечные связи в мета-положениях являются органическими поперечными связями, образованными переходным металлом и органическими фрагментами, присоединенными к переходному металлу через по меньшей мере четыре промежуточных атома кислорода, или поперечные связи в мета-положениях являются неорганическими связями, включающими концевые участки, содержащие редкоземельный элемент, и ядро, содержащее по меньшей мере один переходный металл, причем каждый концевой участок, содержащий редкоземельный элемент, связан с ядром, содержащим переходный металл, посредством одного или более атомов О, N или S.

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при изготовлении фенолоформальдегидного олигомера, применяемого при производстве фанеры и древесностружечных плит.
Настоящее изобретение относится к способу получения новолачных фенолформальдегидных смол, предназначенных для использования в качестве модифицирующих добавок, усиливающих свойства смол, для промоторов адгезии в шинных резинах и резино-технических изделиях, а также других композиционных материалах, например, для получения эластомеров.

Изобретение относится к способу отверждения новолачной смолы. .
Изобретение относится к термореактивным самосшивающимся бесформальдегидным смолам. .

Изобретение относится к химической промышленности и может быть использовано для снижения содержания в материалах, получаемых на основе формальдегидосодержащих смол, несвязанного формальдегида.
Изобретение относится к химии высокомолекулярных соединений, в частности к способу отверждения борорганических полимеров, используемых в промышленности термостойких композиционных материалов.
Изобретение относится к области химии конденсационных полимеров, в частности химии фенолоформальдегидных смол (ФФС) резольного типа, которые могут быть использованы в качестве тампонирующих составов для герметизации водопритоков при нефтедобыче, при бурении скважин, а также в качестве связующих агентов в производстве полимербетонов, древесно-волокнистых материалов и др.

Изобретение относится к комбинированному способу, состоящему в том, что на установке A получают чистый порошок карбонила железа путем разложения чистого пентакарбонила железа, а освобождающуюся при разложении пентакарбонила железа моноокись углерода (CO) используют для получения дальнейшего порошка карбонила железа из железа на установке A, или подводят к присоединенной установке B для получения синтез-газа, или подводят к присоединенной установке C для получения углеводородов из синтез-газа.
Наверх