Способ изготовления магнийсиликатного проппанта и проппант

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. В способе изготовления магнийсиликатного проппанта, содержащего 18-30 мас. % MgO, из сырья на основе природного магнийсодержащего компонента и кварцполевошпатного песка, включающем предварительный обжиг природного магнийсодержащего компонента, его помол с кварцполевошпатным песком, грануляцию материала, обжиг сырцовых гранул и их рассев, в качестве природного магнийсодержащего компонента используют серпентинит Баженовского месторождения, содержащий в пересчете на прокаленное вещество, мас. %: SiO2 38-46; MgO 38-46; Fe2O3 6-12; СаО 0,2-2,1; Аl2O3 0,05-1,1; Cr2O3 0,2-0,7; NiO 0,1-0,45; MnO 0,05-0,25; K2O 0,002-0,2; Na2O 0,06-0,5; микропримеси – остальное, предварительный обжиг указанного серпентинита и обжиг сырцовых гранул производят со скоростью подъема температуры более 150°C/ч. Магнийсиликатный проппант характеризуется тем, что он получен указанным выше способом. Технический результат - увеличение коэффициента восстановления проппанта при сохранении его прочностных характеристик 2 н.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП. Гидравлический разрыв пласта является процессом нагнетания жидкостей в нефтеносный или газоносный подземный пласт при достаточно высоких скоростях и давлениях, в результате чего пласт растрескивается. Для удерживания трещины в открытом состоянии после снятия давления разрыва применяется расклинивающий агент (проппант), который смешивается с нагнетаемой жидкостью. Применение ГРП увеличивает поток текучих сред из нефтяного или газового резервуара в скважину за счет увеличения общей площади контакта между резервуаром и скважиной, а также за счет того, что слой проппанта в трещине имеет более высокую проницаемость, чем проницаемость пласта.

Современные материалы, широко используемые для закрепления трещин в раскрытом состоянии, можно разделить на два вида - кварцевые пески и синтетические проппанты. К физическим характеристикам проппантов, которые влияют на проводимость трещины и дебит скважины, относятся такие параметры, как прочность, гранулометрический состав, форма гранул (сферичность и округлость) и плотность.

Первым и наиболее часто используемым материалом для закрепления трещин являются пески, плотность которых составляет приблизительно 2,65 г/см3. Пески обычно используются при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. Для снижения разрушаемости материала и улучшения его эксплуатационных характеристик на зерна песка наносят специальное полимерное покрытие. В конце 70-х годов с созданием новых среднепрочных и высокопрочных синтетических проппантов начался подъем в области применения ГРП на газовых и нефтяных месторождениях, приуроченных к плотным песчаникам и известнякам, расположенным на больших глубинах.

Среднепрочными являются керамические проппанты плотностью 2,7-3,3 г/см3, используемые при напряжении сжатия до 69 МПа. Сверхпрочные проппанты с плотностью 3,3-3,8 г/см3 используются при напряжении сжатия до 100 МПа. Производятся и используются также облегченные проппанты с плотностью 2,55 г/см3 и менее. На протяжении длительного времени среди специалистов, работающих в сфере нефтедобычи, преобладало мнение, что основным параметром проппанта, обеспечивающим максимальный дебит скважины, является его прочность. В этой связи с увеличением глубины скважин применялся все более плотный и соответственно более прочный проппант. Однако в серии масштабных комплексных полевых испытаний, проведенных в 2011-2013 годах компанией Oxane Materials, было убедительно показано, что проппант с пониженной плотностью (среднеплотный или облегченный) и усовершенствованной поверхностью, не обладающий исключительными прочностными характеристиками, способен обеспечивать высокие дебиты как средних, так и глубоких скважин. Этот эффект достигается преимущественно за счет улучшения переноса и оптимизации расположения проппанта в трещинах при проведении операции ГРП с использованием жидкостей с низкой вязкостью, что является особенно актуальным при использовании технологии горизонтального бурения в сочетании с гидроразрывом (см. доклады компании Oxane Materials на конференции SPE Hydraulic Fracturing Technology в Woodlands, штат Техас, США, 4-6 февраля 2014 г.).

Транспортировка проппанта является результатом трех основных механизмов: гравитационного оседания (Закон Стокса), осаждения (образование дюн) и сальтации. Соответственно снижение плотности проппанта уменьшает скорость осаждения, а низкий коэффициент трения уменьшает высоту дюны, в результате чего расклинивающий агент проходит все дальше в трещину. Сальтация (скачкообразное движение частиц проппанта в условиях пульсирующего потока) является одним из ключевых механизмов переноса в системах жидкости с низкой вязкостью и описывается при помощи коэффициента восстановления проппанта (COR). В общем случае для одного движущегося тела коэффициент рассчитывается по следующей формуле:

COR=V//V0,

где V/ - скорость частицы после отскока от твердой поверхности, a V0 - начальная скорость частицы.

COR можно также измерить в ходе теста вертикального падения путем измерения высоты падения и высоты отскока частицы. В этом случае для удара при вертикальном падении:

COR=(h//h0)1/2,

где h0 - высота падения, a h/ - высота отскока частицы.

Измеряя коэффициент восстановления, можно оценить эффективность транспортировки проппанта в трещине, через которую проходит суспензия с расклинивающим агентом. По мере того, как в структуре начинает формироваться проппантная пачка, дополнительные частицы проппанта, которые сталкиваются с пачкой расклинивающего агента, могут вести себя двояко. В первом случае частицы проппанта могут удариться о пачку и остановиться, во втором варианте частицы проппанта могут удариться о пачку, отскочить и продвинуться дальше. В условиях любой скорости, тенденция частиц проппанта к отскоку и переносу дальше в трещину находится в прямой зависимости от COR.

Известна патентная заявка США №20140290349, в которой, в частности, предложен оригинальный экспресс-метод сравнительного определения COR различных типов проппантов, основанный на измерении расстояния отскока частиц от точки падения. Авторы известного технического решения заявляют, что в рамках одной фракции проппанта и при одинаковых показателях округлости/сферичности частиц, дальность отскока определяется плотностью и упругостью материала, из которого изготовлен расклинивающий агент.

Таким образом, для оптимизации коэффициента восстановления, а следовательно, и процесса переноса, необходимо получить упругий проппант с пониженной плотностью. При этом для дополнительного увеличения дебета скважины желательно сохранить достаточные прочностные характеристики гранул. Оптимальным сочетанием указанных характеристик обладают проппанты средней плотности алюмосиликатного или магнийсиликатного состава. В линейке магнийсиликатных проппантов среднеплотными являются расклиниватели, содержащие в своем составе 18-30 мас. % MgO.

Известны легковесные магнийсодержащие проппанты с содержанием оксида магния от 0,3 до 18 мас. %, которые в силу пониженной плотности имеют недостаточно высокие прочностные характеристики (см. патенты РФ №2446200, №2437913, №2547033).

Известны упрочненные проппанты, имеющие в своем составе от 19 до 48 мас. % оксида магния, которые производятся с использованием спекающих или уплотняющих проппант - сырец добавок, вследствие чего обладают повышенным насыпным весом (см. патенты РФ №2463329, №2521989). Кроме того, использование спекающих и уплотняющих добавок отрицательно сказывается на упругих характеристиках материала. Следовательно, известные технические решения не могут обеспечить получение продукта с оптимальным соотношением прочности и коэффициента восстановления.

Технической задачей, на решение которой направлено заявляемое изобретение, является увеличение коэффициента восстановления проппанта при сохранении необходимых прочностных характеристик материала.

Указанная задача решается тем, что в способе изготовления магнийсиликатного проппанта, содержащего 18-30 мас. % MgO, из сырья на основе природного магнийсодержащего компонента и кварцполевошпатного песка, включающем предварительный обжиг природного магнийсодержащего компонента, его помол с кварцполевошпатным песком, грануляцию материала, обжиг сырцовых гранул и их рассев, в качестве природного магнийсодержащего компонента используют серпентинит Баженовского месторождения, содержащий в пересчете на прокаленное вещество, мас. %:

SiO2 38-46
MgO 38-46
Fe2O3 6-12
CaO 0,1-2,1
Al2O3 0,05-1,1
Cr2O3 0,2-0,7
NiO 0,1-0,45
MnO 0,05-0,25
K2O 0,002-0,2
Na2O 0,06-0,5
микропримеси остальное,

а предварительный обжиг указанного серпентинита и обжиг сырцовых гранул производят со скоростью подъема температуры более 150°C/ч.

Кроме того, магнийсиликатный проппант характеризуется тем, что он получен указанным способом.

Экспериментальным путем установлено, что наиболее предпочтительным способом регулирования плотности магнийсиликатных проппантов без использования порообразующих, спекающих и уплотняющих сырцовые гранулы добавок является изменение состава исходной шихты с использованием природного сырья, взятого с конкретного месторождения. Сохранение прочностных характеристик расклинивателя обеспечивается скоростным обжигом, как исходного серпентинита, так и сырцовых гранул. Общеизвестно, что упрочнение керамических материалов достигается за счет сохранения в изделиях при обжиге мелкокристаллической структуры. В большинстве случаев эта задача решается путем тонкого помола исходной шихты. Вместе с тем, процесс рекристаллизации можно замедлить за счет скоростного обжига изделий. Учитывая тот факт, что гранулы проппанта имеют небольшой объем, их обжиг можно осуществлять в высокоскоростном режиме.

Технология изготовления магнийсиликатного проппанта предполагает предварительный обжиг природного серпентинита при температуре 750-1150°C, во время которого происходит удаление влаги и образование форстерита, помол материала с кварцполевошпатным песком, гранулирование шихты и обжиг сырцовых гранул при температуре 1200-1350°C (температура обжига в основном определяется содержанием MgO в шихте). Во время спекающего обжига зерна форстерита в основном преобразуются в метасиликат магния. С целью сохранения мелкокристаллической структуры в спеченных гранулах целесообразно обжиг исходного сырья производить с повышенной скоростью. В этом случае удается изначально получить форстерит/пироксен с минимальным размером зерна, а при последующем скоростном обжиге проппанта-сырца сохранить мелкодисперсную фазу метасиликата магния, который обеспечивает максимальное упрочнение керамики. Следует отметить, что заявляемый серпентинит Баженовского месторождения демонстрирует заметный разброс значений содержания слагающих его компонентов, зависящий как от места и условий залегания, так и от фракционного состава серпентинитового щебня, используемого для производства проппанта. В этой связи соблюдение скоростного режима обжига серпентинита и проппанта-сырца приобретает особую актуальность, так как медленный обжиг материалов, сопряженный с появлением жидкой фазы, приводит к образованию и сохранению в структуре керамики различных фаз неконтролируемого переменного состава, отрицательно влияющих на упругие и прочностные характеристики конечного продукта.

Авторами экспериментальным путем установлено, что при скорости подъема температуры до конечного значения 150°C/ч и менее проппант имеет пониженное значение COR и недостаточно высокие прочностные характеристики. Максимальная скорость подъема температуры определяется исключительно техническими характеристиками производственного обжигового оборудования. При этом использование в качестве природного магнийсодержащего компонента серпентинита Баженовского месторождения позволяет получить проппант с высоким значением коэффициента восстановления. Вероятно, это объясняется присутствием в составе серпентинита оптимального количества оксидов железа и никеля, способствующих наиболее полному превращению форстерита в метасиликат магния, а также уникальным соотношением других входящих в состав материала компонентов, обеспечивающих упругие свойства расклинивателя. Кроме того, мелкозернистая структура спеченной керамики способствует получению гранул с более гладкой поверхностью, что также способствует повышению значения COR.

Пример осуществления изобретения

Шихту для изготовления магнийсиликатного проппанта с содержанием MgO 25 мас. % готовили путем совместного помола до фракции менее 30 мкм, термообработанного при температуре 1050°C со скоростью подъема температуры 500°C/ч серпентинита Баженовского месторождения и кварцполевошпатного песка. Полученную шихту гранулировали на тарельчатом грануляторе, гранулы обжигали в лабораторной печи при температуре 1280°С со скоростью подъема температуры 500°С/ч. У обожженных гранул фракции 16/20 меш с показателями сферичности/округлости 0,9 определяли насыпную плотность и разрушаемость по общепринятой методике ISO 13503-2:2006 (Е), а также сравнительный коэффициент восстановления по методике, аналогичной представленной в заявке США №20140290349: пробу проппанта массой 50 г высыпали через воронку (Н=150 мм, Dвых. отв=11 мм) с высоты 50 мм под углом 45° на стекло толщиной 6 мм и измеряли расстояние от точки падения, на котором разместилось 90 мас. % гранул. Аналогичным образом тестировали пробы проппантов с различным содержанием MgO, изготовленные с использованием серпентинита Баженовского месторождения различного химического состава, обожженного с различной скоростью подъема температуры. Усредненный состав серпентинита, использованного при проведении исследований, - SiO2 - 43.5, MgO - 43,5, Fe2O3 - 9,5, СаО - 1,1, Al2O3 - 0,8, Cr2O3 - 0,6, NiO - 0,3, MnO - 0,2, K2O - 0,1, Na2O - 0,35, микропримеси - 0,05, мас. % в пересчете на прокаленное вещество. При этом также меняли скорость подъема температуры обжига гранул проппанта - сырца. Результаты испытаний приведены в таблице.

Анализ данных таблицы показывает, что магнийсиликатный проппант, изготовленный заявляемым способом (примеры 1-9), обладает повышенным коэффициентом восстановления и обладает требуемой прочностью при достаточно низких значениях насыпной плотности гранул. Следовательно, применение заявляемого проппанта позволит увеличить дебиты скважин за счет лучшего размещения прочных гранул в трещинах ГРП.

1. Способ изготовления магнийсиликатного проппанта, содержащего 18-30 мас. % MgO, из сырья на основе природного магнийсодержащего компонента и кварцполевошпатного песка, включающий предварительный обжиг природного магнийсодержащего компонента, его помол с кварцполевошпатным песком, грануляцию материала, обжиг сырцовых гранул и их рассев, причем в качестве природного магнийсодержащего компонента используют серпентинит Баженовского месторождения, содержащий в пересчете на прокаленное вещество, мас. %:

SiO2 38-46
MgO 38-46
Fe2O3 6 -12
CaO 0,1-2,1
A12O3 0,05-1,1
Cr2O3 0,2-0,7
NiO 0,1-0,45
MnO 0,05-0,25
K2O 0,002-0,2
Na2O 0,06-0,5
микропримеси остальное,

а предварительный обжиг указанного серпентинита и обжиг сырцовых гранул производят со скоростью подъема температуры более 150°С/ч.

2. Магнийсиликатный проппант, характеризующийся тем, что он получен способом по п. 1.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонтно-водоизоляционным работам в нефтяных и газовых скважинах. Технический результат - обеспечение изоляции воды в коллекторах любой проницаемости, их закрепление в прискважинной зоне пласта, ликвидация заколонных перетоков, ликвидация притока подошвенных вод установкой экрана в плоскости, ремонт эксплуатационных колонн.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пласта, и предназначено для использования при разработке и эксплуатации нефтяных месторождений.

Изобретение относится к способу блокирования потока масляно-водной текучей среды с соотношением вода:масло, равным 70:30, через по меньшей мере один проход в подземной формации, через которую проходит ствол скважины, в котором осуществляют: (i) выбор композиций, концентраций и размеров жестких волокон, гибких волокон и твердых тампонирующих частиц; (ii) приготовление масляно-водной текучей среды, в которую добавляют волокна и частицы; и (iii) нагнетание блокирующей масляно-водной текучей среды в проход, при этом волокна образуют сетку поперек прохода, а твердые частицы тампонируют сетку, блокируя поток, причем жесткие волокна имеют диаметр от 20 мкм до 60 мкм и длину от 2 мм до 12 мм, при этом гибкие волокна имеют диаметр от 8 мкм до 19 мкм и длину от 2 мм до 12 мм.

Группа изобретений относится к использованию буферных жидкостей в подземных пластах. Технический результат – повышение эффективности вытеснения жидкости в стволе скважины буферной жидкостью перед введением другой жидкости, улучшение удаления твердых веществ, разделение физически несовместимых жидкостей.

Настоящее изобретение относится к повышению нефтедобычи, когда углеводороды не протекают под действием естественных сил. Дисперсия для повышения нефтедобычи, содержащая диоксид углерода в жидком или сверхкритическом состоянии, разбавитель из группы, состоящей из воды, соляного раствора, реликтовой воды, поверхностной воды, дистиллированной воды, воды, обогащенной углекислотой, морской воды и их сочетаний и неионное поверхностно-активное вещество, получаемое реакцией алкоксилирования первого эпоксида, второго эпоксида, отличного от первого эпоксида, и группы первичного алифатического амина, ковалентно связанного с третичным атомом углерода С4-С30 разветвленного алкилмоноамина.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта при наличии попутной и/или подошвенной воды.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам гидромеханического упрочнения ствола в процессе бурения скважин различного назначения.

Настоящее изобретение относится к области добычи газа и конденсата газового, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений (ГМ) и газоконденсатных месторождений (ГКМ), в продукции которых содержится высокоминерализованная пластовая вода (общая минерализация 50-200 г/л) и высокое содержание УВК до 50%.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - сокращение времени бурения, сохранение устойчивости бурового раствора, охрана окружающей среды с одновременным уменьшением стоимости бурового раствора.

Изобретение относится к жидкостям для гидроразрыва подземных пластов при добыче углеводородов. Способ выбора поверхностно-активного вещества (ПАВ) для применения в жидкости для гидроразрыва при обработке подземного пласта, содержащий обеспечение по меньшей мере двух ПАВ, взятие пробы воды из обрабатываемого пласта, взятие пробы неочищенной нефти из обрабатываемого пласта, взятие керна из обрабатываемого пласта, выбор проппанта для применения в обрабатываемом пласте, смешивание каждого из ПАВ с указанной пробой воды с созданием образцов смеси ПАВ и указанной пробы воды, определение растворимости ПАВ для каждого указанного образца смеси ПАВ и пробы воды и присвоение показателя качества по растворимости каждому ПАВ, определение динамического поверхностного натяжения ПАВ для каждого указанного образца смеси ПАВ и пробы воды и присвоение показателя качества по динамическому поверхностному натяжению каждому ПАВ, смешивание каждого из ПАВ с указанной пробой нефти с созданием образцов смеси ПАВ и указанной пробы нефти, определение поверхностного натяжения на границе раздела фаз между растворами ПАВ и неочищенной нефтью для каждого ПАВ и пробы нефти и присвоение показателя качества по поверхностному натяжению на границе раздела фаз каждому ПАВ, определение способности создавать эмульсию растворами ПАВ и неочищенной нефтью для каждого ПАВ и пробы нефти и присвоение показателя качества по способности создавать эмульсию каждому ПАВ, прокачивание раствора каждого из ПАВ через насыщенный пробой неочищенной нефти измельченный указанный керн с получением эффлюента, определение нефтеотдачи для каждого ПАВ по эффлюенту и присвоение показателя качества по нефтеотдаче каждому ПАВ, определение в указанном керне капиллярного давления для каждого ПАВ и присвоение показателя качества по капиллярному давлению каждому ПАВ, определение адсорбции на выбранном проппанте для каждого ПАВ и присвоение показателя качества по адсорбции на выбранном проппанте каждому ПАВ, суммирование для каждого ПАВ полученных показателей качества по меньшей мере по двум указанным выше характеристикам и выбор ПАВ с наибольшим значением суммы показателей качества.

Изобретение относится к материалам для ювелирной промышленности, а именно к искусственным материалам для изготовления имитаций природных драгоценных и полудрагоценных камней и технологии их синтеза.

Изобретение относится к области машиностроения и может быть использовано при изготовлении композитных керамических изделий типа опорных элементов (например, колец/валов подшипников качения/скольжения) или инструментов типа чашечных резцов или режущих керамических пластин.

Изобретение относится к получению композиционного материала на основе карбосилицида титана. Способ включает приготовление порошковой смеси, состоящей из порошков титана, карбида кремния и графита и нанопорошка оксида алюминия, механосинтез порошковой смеси и холодное прессование смеси.

Изобретение относится к расклинивающим наполнителям и способам их создания. Описывается множество керамических расклинивающих наполнителей, где наполнители являются монодисперсными с распределением, являющимся распределением 3-сигма или ниже с шириной общего распределения 5% или менее от среднего размера частиц, а также другие варианты указанных наполнителей, способы изготовления этих расклинивающих наполнителей и способы использования этих расклинивающих наполнителей в извлечении углеводородов.
Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив.
Изобретение относится к изготовлению градиентных керамических материалов на основе порошков оксидов металлов. Получают полидисперсный керамический порошок оксида металла или смеси порошков оксидов металлов посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0,1 до 100 мкм, затем к упомянутому порошку добавляют органическую связку, перемешивают формовочную смесь, заливают ее в форму, выдерживают формовочную смесь для расслоения ее по фракциям и спекают полученную заготовку с изотермической выдержкой.

Изобретение относится к области получения керамики, в частности к высокоскоростным способам спекания компактированных керамических материалов с помощью микроволнового излучения.

Изобретение относится к области производства керамических материалов, в частности к технологии получения композиционных материалов на основе тугоплавких соединений для высокотемпературного применения в аэрокосмической технике.
Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов.

Изобретение относится к технологии производства спеченной заготовки из α-оксида алюминия в качестве исходного сырья для дальнейшего получения из нее монокристаллов сапфира.

Изобретение относится к материалам для ювелирной промышленности, а именно к искусственным материалам для изготовления имитаций природных драгоценных и полудрагоценных камней и технологии их синтеза.
Наверх