Акустический способ определения параметров перфорирования при вторичном вскрытии нефтегазовых буровых скважин

Изобретение может быть использовано в нефтегазодобывающей промышленности для определения качества проведения перфорации обсадных колонн буровых скважин при вторичном вскрытии пласта. Информационный шумовой сигнал, образованный работой дисков перфоратора, проходит по гидроакустическому каналу, принимается, оцифровывается и подается на корреляционные фильтры, на которые также подаются эталонные акустические сигналы: вода-сталь, вода-бетон, вода-грунт, которые представляют собой оцифрованные аудиосигналы шума струи воды, бьющей по стали, бетону и грунту, и шум резания трубы диском. На выходах корреляционных фильтров будут корреляционные функции, которые представляют собой пики, принимающие положительные значения при наличии в шумовом сигнале сигнала, схожего с эталонным. Таким образом, каждая корреляционная функция соответствует одному из состояния работы перфоратора, а по спектру корреляционных функций оцениваются процессы, происходящие в скважине. Обеспечивается возможность с высокой степенью точности определения состояния параметров скважины при гидромеханической перфорации в условиях акустических помех при соотношении сигнал/шум меньше единицы. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано в нефтегазодобывающей промышленности для определения качества проведения перфорации обсадных колонн буровых скважин при вторичном вскрытии пласта.

Общей проблемой при перфорировании обсадных колонн при любом способе перфорации является создание максимально качественного гидродинамического сообщения скважины с пластом, а также максимальная сохранность обсадной колонны и цементного кольца за пределами интервала вскрытия. Также очень важно определение глубины, объема и мест расположения перфорационных полостей и каналов, образующихся в околоствольном пространстве скважины, например, после проведения на скважине щелевой гидромеханической перфорации. Отсюда следует, что необходимо контролировать процесс перфорации с точки зрения необходимости и достаточности прореза обсадной колонны. Особенно это относится при применении гидромеханической щелевой перфорации (ГДМЩП).

Известно изобретение по а.с. СССР №792078, М. Кл3 G01F 17/00, опубл. 30.12.1980 г., БН №78 «Акустический способ определения внутреннего объема объекта».

В этом способе создают звуковые поля и производят измерение параметров (времени) реверберации, при этом звуковые поля создают с помощью одного и того же источника, последовательно размещаемого в исследуемом и контрольном объектах, измеряют уровни звукового давления в диффузных зонах создания звуковых полей.

Недостаток: наличие двух источников звуковых полей, длительность измерения во времени, наличие отдельного источника питания, т.е. большие аппаратурные и временные затраты. Отдельной проблемой применения акустических столбов является наличие в канале измерения акустических помех, создаваемых электрическими и механическими устройствами буровой установки.

Известен акустический способ определения параметров объемных полостей в околоскваженном пространстве перфорированной скважины, см. патент РФ №2174242, МПК 7 G01V 1/40 - ПРОТОТИП. Сущность: в скважине до и после ее перфорации по всему интервалу перфорации проводят волновой акустический каротаж с цифровой регистрацией полного волнового сигнала. Вычисляют средние значения всех цифровых отсчетов в окнах регистрации полных волновых сигналов на каждый шаг квантования по глубине до и после перфорации скважин. По вычислительным значениям строят каротажные кривые средних амплитуд волновых сигналов. По сравнительной оценке степени снижения амплитуд после перфорации судят о глубине, объеме и месте положения образованных при перфорации полостей. Технический результат: создание возможности получать достоверную информацию о глубине каналов и полостей перфорации, их объеме и расположении в околоствольном пространстве скважины.

Недостаток: проверка качества перфорации может производиться только после ее окончания по всей длине скважины, а во время перфорации не производится, также качество перфорации контролируется косвенно, к тому же требуются больше аппаратные и временные затраты, следовательно, способ довольно затратен.

Целью настоящего изобретения является достижение нового технического результата, а именно - обеспечение возможности с высокой степенью точности определения состояния параметров скважины при гидромеханической перфорации в условиях акустических помех при соотношении сигнал/шум меньше единицы.

Еще одной целью является упрощение способа.

Указанный технический результат достигается за счет измерения параметров распространения акустической волны во время перфорации по гидродинамическому каналу: по прилегающей породе, включая цементное кольцо, по внутреннему каналу самой обсадной трубы, причем источником звука является сам механизм перфоратора во время работы и шум подающей воды. Из общедоступных источников патентной и научно-технической информации неизвестны акустические способы определения параметров объемных полостей в скважине и в околоскважинном пространстве перфорированной скважины, а также контроль точности прорезания обсадной трубы, в которых были бы использованы введенные нами новые существенные отличительные операции, обеспечивающие предлагаемому способу получение нового технического результата, изложенного в целях заявляемого изобретения.

Для решения поставленной задачи предлагается акустический способ определения параметров перфорирования при вторичном вскрытии нефтегазовых буровых скважин, основанный на использовании естественного гидромеханического канала скважины, отличающийся тем, что информационный шумовой сигнал, образованный работой дисков перфоратора, проходит по гидроакустическому каналу, принимается, оцифровывается и подается на корреляционные фильтры, на которые также подаются эталонные акустические сигналы: вода-сталь, вода-бетон, вода-грунт, которые представляют собой оцифрованные аудиосигналы шума струи воды, бьющей по стали, бетону и грунту, и шум резания трубы диском, на выходах корреляционных фильтров будут корреляционные функции, которые представляют собой пики, принимающие положительные значения при наличии в шумовом сигнале сигнала, схожего с эталонным, таким образом, каждая корреляционная функция соответствует одному из состояния работы перфоратора, а по спектру корреляционных функций оцениваются процессы, происходящие в скважине.

На чертеже представлена структурная электрическая схема способа, на которой изображено:

1 - источник акустического сигнала,

2 - гидроакустический канал передачи,

3 - приемник акустических сигналов,

4 - аналого-цифровой преобразователь (АЦП),

5 - персональный компьютер (ПК) со специальным программным обеспечением (СПО),

6, 7 и 8 - корреляционные фильтры: первый, второй и третий соответственно,

9, 10 и 11 - эталонные акустические сигналы: первый, второй и третий (вода-сталь, вода-бетон и вода-грунт) соответственно.

12 - адаптивный компенсатор помех (АКП).

Схема имеет следующие соединения.

Источник акустических сигналов 1 через гидроакустический канал передачи 2 и приемник акустических сигналов 3 в виде соединен через первый вход АКП 12 с аналоговым входом АЦП 4, со вторым входом АКП 12 соединен источник U помех цифровой выход которого соединен с первыми входами всех трех корреляционных фильтров 6, 7 и 8, а с их вторыми входами соединены выходы всех трех эталонных акустических сигналов 9, 10 и 11 соответственно; выходы первого, второго и третьего корреляционных фильтров 6, 7 и 8 соединены с входами ПК 5, выход которого является выходом данной схемы по указанному способу.

Устройство по данному способу работает следующим образом.

Суть работы заключается в организации гидроакустической обратной связи циркулярных дисков гидромеханического щелевого перфоратора. Источник акустического сигнала 1 - это работа вышеупомянутых дисков (шум резания трубы), а также шум струи воды, бьющей по стали, бетону и грунту. Эти шумы по гидроакустическому каналу передачи 2 (основная водоподающая труба), к которой крепится приемник акустического канала 3 (пьезодатчики), выходные аналоговые электрические сигналы этого приемника поступают на первый вход АКП 12 в виде сигнал-шум, на второй вход, которого поступают чисто шумовые сигналы. АКП 12 выделяет из этих двух шум и U шум полезные сигналы U сигн., которые поступают на АЦП 4, где оцифровываются и поступают на первые входы корреляционных фильтров 6-8, на вторые входы которых подаются эталонные акустические сигналы 9-11, записанные в СПО ПК 5. Эти сигналы представляют собой оцифрованные аудиосигналы шума струи воды, бьющей по стали (или шум резания трубы дисками), бетону и грунту. На выходе корреляционных фильтров 6-8 будут наблюдаться корреляционные функции, которые представляют собой пики, принимающие положительные или отрицательные значения разных уровней. При наличии в общем сигнале сигнала, схожего с одним из эталонных, корреляционная функция на выходе одного из корреляционных фильтров принимает положительное значение, таким образом, каждая корреляционная функция соответствует одному из состояний работы гидромеханического целевого перфоратора. По спектру корреляционных функций на экране монитора компьютера 5 можно судить о процессах, происходящих в скважине. Подобные методы анализа позволяют принимать сигналы с двух каналов: стальной трубе и воды в трубе.

При установке в системе дополнительных корреляционных фильтров, на входы которых будет подаваться шумовой сигнал с гидроакустического канала передачи и эталонные оцифрованные сигналы, соответствующие шуму струи воды, бьющей о грунт на разных расстояниях, т.е. на разных объемах вымытой площади, то по их корреляционным функциям можно судить об объеме, вымытом перфоратором.

Упомянутые эталонные сигналы можно получать двумя способами: можно смоделировать их или записать их в скважине при работе перфоратора и обработать.

Данный способ позволяет контролировать работу перфоратора: холостой ход, резание трубы, фиксация окончания резки, определять объем вымытой площади и так по всей длине скважины до 5 км.

Частотный диапазон акустического сигнала лежит в пределах 100-3000 Гц. Затухание сигнала при диаметре трубы 100 мм составляет при глубине скважины 5000 м на указанных частотах не более 10 дБ.

В частотном диапазоне акустического сигнала присутствует шумовая составляющая, обусловленная шумами динамической резонации механических частей перфоратора и ревербирационными шумами, а также шумами водопадающего насоса, но их величины на порядок меньше. Существует еще эффект Доплера, который приводит к частотным искажениям, т.е. изменяется частота акустического сигнала, но это можно учесть в СПО.

Адаптивная компенсация помех (на позиции 12) представляет собой способ оптимальной фильтрации, который можно применять всегда, когда имеется подходящий эталонный входной сигнал. Достоинством этого способа является адаптивность схемы по отношению к классу сигналов и их параметрам, низкий уровень помех на выходе и малые вносимые искажения сигналов. В компенсаторе помех 12 с применением адаптивного фильтра эффективное подавление помех происходит только тогда, когда помеховые составляющие на обоих входах компенсатора помех взаимно коррелированны.

Составные части способа могут быть выполнены на следующих элементах:

приемник акустических сигналов 3 на пьезоэлементах, использующих эффект Холла;

АЦП 4 - например на сигма-дельта АЦП, 24-разрядном;

ПК 5 с СПО - современного типа;

Корреляционные фильтры 6, 7 и 8 могут быть выполнены как программируемые многофункциональные средства, например, на программируемых логических матрицах (ПЛМ);

Эталонные акустические сигналы 9, 10 и 11 заранее записанные оцифрованные аудиосигналы шума струи воды, бьющей по стали, бетону и грунту данных перфораторных механизмов;

Адаптивный компенсатор помех 12 (АКП) может быть выполнен по патенту РФ №109942 также на ПЛМ.

Таким образом, предложенный способ полностью соответствует основному экономическому критерию «стоимость-эффективность».

Библиографические данные

1. Использование новой техники электромеханической перфорации, «Новые нефтегазовые технологии», NW, 2008 г.

2. Патент РФ на изобретение №2244800.

3. Патент РФ на полезную модель №117755.

4. Патент РФ на изобретение №2473789.

5. Патент РФ на изобретение №2270331.

6. Патент РФ на изобретение №2552285.

7. Патент РФ на изобретение №2174242.

Акустический способ определения параметров перфорирования при вторичном вскрытии нефтегазовых буровых скважин, основанный на использовании естественного гидромеханического канала скважины, отличающийся тем, что информационный шумовой сигнал, образованный работой дисков перфоратора, проходит по гидроакустическому каналу, принимается, компенсируется, оцифровывается и подается на корреляционные фильтры, на которые также подаются эталонные акустические сигналы: вода-сталь, вода-бетон, вода-грунт, которые представляют собой оцифрованные аудиосигналы шума струи воды, бьющей по стали, бетону и грунту, и шум резания трубы диском, на выходах корреляционных фильтров будут наблюдаться корреляционные функции, которые представляют собой пики, принимающие положительные значения при наличии в шумовом сигнале сигнала, схожего с эталонным, таким образом, каждая корреляционная функция соответствует одному из состояния работы перфоратора, а по спектру корреляционных функций оцениваются процессы, происходящие в скважине.



 

Похожие патенты:

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды.

Группа изобретений относится к области прострелочно-взрывных работ. Устройство для перфорации скважин содержит по меньшей мере один перфорационный заряд; инициирующее устройство, которое содержит баллистическую цепь, приспособленную для поджигания по меньшей мере одного перфорационного заряда, при этом баллистическая цепь содержит детонатор и детонаторный шнур; и баллистический перекрывающий затвор, расположенный между детонатором и детонаторным шнуром, причем баллистический перекрывающий затвор предотвращает воспламенение детонаторного шнура, и при этом баллистический перекрывающий затвор выполнен с возможностью удаления из позиции между детонатором и детонаторным шнуром при поступлении команды с поверхности.

Группа изобретений относится к области прострелочно-взрывных работ. Устройство для перфорации скважин содержит по меньшей мере один перфорационный заряд; инициирующее устройство, которое содержит баллистическую цепь, приспособленную для поджигания по меньшей мере одного перфорационного заряда, при этом баллистическая цепь содержит детонатор и детонаторный шнур; и баллистический перекрывающий затвор, расположенный между детонатором и детонаторным шнуром, причем баллистический перекрывающий затвор предотвращает воспламенение детонаторного шнура, и при этом баллистический перекрывающий затвор выполнен с возможностью удаления из позиции между детонатором и детонаторным шнуром при поступлении команды с поверхности.

Изобретение относится к нефтяной промышленности и может быть применено для разработки нефтяных месторождений. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта, спуск обсадной колонны в горизонтальный ствол скважины и цементирование кольцевого пространства между обсадной колонной и горной породой, проведение гидромеханической перфорации во всех интервалах продуктивного пласта, извлечение колонны труб с гидромеханическим перфоратором из скважины, спуск колонны труб с пакером и проведение поинтервального ГРП в направлении от забоя к устью в каждом проперфорированном интервале обсадной колонны с последовательным отсечением каждого интервала.

Изобретение относится к нефтегазодобывающей промышленности, к области бурения и эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки продуктивных пластов.

Изобретение относится к нефтедобывающей промышленности и может быть применено для улучшения гидродинамической связи скважины с продуктивным пластом. Способ включает проведение гидравлического разрыва пласта (ГРП) путем спуска в скважину колонны труб, установку центральной задвижки на верхнем конце колонны труб, закачку по колонне труб жидкости разрыва при открытой центральной задвижке, создание давления разрыва пласта с образованием трещины и крепление трещины проппантом.

Изобретение относится к нефтегазодобывающей промышленности. Устройство содержит корпус, соединительную муфту, посредством которой устройство соединено с насосно-компрессорной трубой, клин с по меньшей мере одним пазом, гидроцилиндры, по меньшей мере один рабочий орган с гидромониторным каналом, размещенным в пазу опоры и клина с возможностью перемещения в пазу клина вдоль него, второй гидроцилиндр, расположенный над первым гидроцилиндром, клин установлен над поршнем второго гидроцилиндра, на котором закреплена опора рабочего органа, подпоршневые полости обоих гидроцилиндров сообщены посредством трубок с гидромониторным каналом рабочего органа и надклиновой полостью подачи рабочей жидкости, фильтр, установленный во внутренней полости соединительной муфты и отделяющий внутреннее трубное пространство от надклиновой полости.

Изобретение относится к нефтегазодобывающей промышленности. Устройство содержит корпус, соединительную муфту, посредством которой устройство соединено с насосно-компрессорной трубой, клин с по меньшей мере одним пазом, гидроцилиндры, по меньшей мере один рабочий орган с гидромониторным каналом, размещенным в пазу опоры и клина с возможностью перемещения в пазу клина вдоль него, второй гидроцилиндр, расположенный над первым гидроцилиндром, клин установлен над поршнем второго гидроцилиндра, на котором закреплена опора рабочего органа, подпоршневые полости обоих гидроцилиндров сообщены посредством трубок с гидромониторным каналом рабочего органа и надклиновой полостью подачи рабочей жидкости, фильтр, установленный во внутренней полости соединительной муфты и отделяющий внутреннее трубное пространство от надклиновой полости.

Изобретение относится к прострелочно-взрывной аппаратуре, а именно к средствам инициирования взрывной цепи корпусных кумулятивных перфораторов. Устройство для возбуждения детонации содержит корпус и размещенные в нем ударный механизм и узел инициирования детонации.

Изобретение относится к кумулятивным корпусным перфораторам и предназначено для осуществления перфорирования стенок скважин. Модульный перфоратор содержит отдельные модули, соединенные между собой узлами соединения модулей с выполнением функций механического прочного соединения и передачи детонации между соседними модулями.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды. Способ включает выполнение перфорации в интервале пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины в пласте циклической чередующейся закачкой по колонне НКТ жидкости-носителя с проппантом, стравливание давления из скважины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины. Для выполнения перфорации в скважину до интервала подошвы пласта спускают гидромеханический перфоратор на колонне НКТ, выполняют пары перфорационных отверстий по периметру скважины от подошвы к кровле пласта со смещением на угол 30° при выполнении каждой пары перфорационных отверстий. После выполнения перфорации колонну НКТ с перфоратором извлекают из скважины, в качестве гидроразрывной жидкости применяют гелированную нефть, определяют общий объем гелированной нефти, производят закачку гелированной нефти по колонне НКТ в интервал пласта с образованием трещины разрыва. Объем гелированной нефти после образования трещины используют в качестве жидкости-носителя в процессе крепления трещины. При этом перед креплением трещины объем оставшейся гелированной нефти делят на две равные части и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м3, с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м3, начиная от 200 до 800 кг/м3. Причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м3. Технический результат заключается в повышении эффективности изоляции трещины от попутной и подошвенной воды; повышении проводимости трещины и надежности реализации способа; повышении качества крепления призабойной зоны пласта; снижении дополнительных затрат. 5 ил., 1 табл.

Изобретение относится к нефтедобывающей промышленности и, в частности, к способу проведения водоизоляционных работ в скважине. Технический результат - повышение эффективности и надежности проведения водоизоляционных работ в скважине. По способу перед проведением водоизоляционных работ определяют размеры нового интервала перфорации по соотношению нефти и воды в продукции скважины. Подготавливают изолирующий состав в объеме, превышающем внутренний объем скважины от забоя до верхней границы интервала перфорации. Спускают колонну заливочных труб в скважину. Заливают изолирующий состав в скважину по меньшей мере до верхней границы интервала перфорации с продавкой в пласт. На разные уровни интервала перфорации заливают изолирующий состав с разными значениями подвижности. Извлекают колонну заливочных труб из скважины. Оставляют изолирующий состав на отверждение. Выдерживают дополнительное время ко времени на отверждение изолирующего состава на опускание конуса обводнения. После истечения времени отверждения изолирующего состава и времени опускания конуса обводнения производят разбуривание изолирующего состава. Производят вскрытие пласта путем щадящей перфорации скважины в кровельной части пласта. До заливки изолирующего состава заполняют внутреннее пространство скважины ниже верхней границы интервала перфорации составом глушения через колонну заливочных труб. Спускают в скважину и устанавливают ниже верхней границы интервала перфорации глухую заглушку. 10 з.п. ф-лы, 3 ил.

Группа изобретений относится к системам и способам вспомогательного уплотнения перфораций, расположенных в скважинной обсадной колонне и, конкретнее, к системам и способам заканчивания скважины с использованием вспомогательного уплотнения. Технический результат - повышение эффективности и надежности уплотнения перфораций в обсадной колонне ствола скважины. По способу осуществляют спуск уплотнительного устройства в канале обсадной колонны в точку на пороговом расстоянии от перфорации. Уплотнительное устройство включает в себя заряд уплотнительного материала, который включает в себя вспомогательный закупоривающий материал. По меньшей мере часть уплотнительного устройства выполнена из ломкого материала, способного разламываться на части под действием разрушающего напряжения. Ломким материалом образуют часть заряда уплотнительного материала. Осуществляют выпуск заряда уплотнительного материала из уплотнительного устройства для подачи вспомогательного закупоривающего материала на перфорацию для дополнения основного закупоривающего материала и уменьшeния расхода текучей среды, проходящей из канала обсадной колонны через перфорацию. 4 н. и 33 з.п. ф-лы, 13 ил.

Изобретение относится к области добычи жидких или газообразных текучих сред из буровых скважин, а именно к устройствам для перфорации скважин. Узел передачи детонации кумулятивного перфоратора содержит внутреннюю муфту, втулку-ложемент узла передачи детонации с отрезками детонирующего шнура, соединяющими секции перфоратора. Отрезки детонирующего шнура во втулке-ложементе соединены внахлест и сообщаются боковыми поверхностями на длине не менее 30 мм, втулка-ложемент выполнена в виде цилиндра с двумя отверстиями с торцов. Одно отверстие имеет диаметр, больший диаметра применяемого детонирующего шнура, и имеет заходную конусную часть, а отверстие противолежащего торца переходит в шпоночный паз шириной, большей ширины применяемого детонирующего шнура. Обеспечивается повышение надежности передачи детонации в узле соединения секций, уменьшение габаритов узла, а также упрощение конструкции. 2 з.п. ф-лы. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии отбора продукции из продуктивных пластов разветвленной горизонтальной скважиной. Технический результат - повышение эффективности способа за счет обеспечения равномерной выработки двух или более пластов и сокращения затрат на бурение. По способу определяют не менее двух пластов-коллекторов, совпадающих в плане, разделенных прослоями-перемычками. Осуществляют бурение вертикальных нагнетательных скважин и разветвленной горизонтальной добывающей скважины с горизонтальными стволами необходимой длины, расположенными в соответствующем пласте-коллекторе. Закачивают вытесняющую жидкость через вертикальные нагнетательные скважины и отбирают продукцию через разветвленную горизонтальную добывающую скважину. Определяют текущие запасы, вязкость нефти и проницаемость для каждого пласта-коллектора на участке разработки. Горизонтальные стволы строят длиной, прямо пропорциональной запасам вскрываемого соответствующего пласта коллектора. Нагнетательные скважины вскрывают перфорацией все пласты-коллекторы. Площадь перфорации для соответствующего пласта-коллектора выбирают прямо пропорционально вязкости продукции и/или толщине участка пласта-коллектора. Обеспечивают выработку запасов нефти всех пластов-коллекторов одним насосным оборудованием разветвленной добывающей скважины. При установившемся режиме работы разветвленной добывающей и нагнетательной скважин ведут постоянный контроль за обводненностью добываемой нефти. При обводнении добываемой нефти 80-90% определяют пласт-коллектор с максимальной обводненностью по плотности нефти и отсекают его от основного ствола добывающей скважины. 1 пр., 1 табл., 1 ил.

Изобретение относится к области бурения и эксплуатации нефтяных, газовых и нагнетательных скважин, а именно к устройству для создания перфорационных отверстий. Устройство для прокалывания обсадной трубы в скважине включает корпус (1), установленные последовательно внутри него по меньшей мере два шток-поршня (2) со сквозным гидравлическим каналом, механизм прокалывания, включающий по меньшей мере два прокалывающих инструмента и клин-поршень (5) клинообразной формы, выполненный с возможностью возвратно-поступательного перемещения под воздействием шток-поршня и воздействия на прокалывающий инструмент (10), и возвратный узел (13), выполненный в виде пружины. Механизм прокалывания дополнительно содержит рабочий цилиндр (7), подпружиненный в нижней части возвратным узлом, а верхней частью взаимодействующий с клином-поршнем, внутри которого размещен перфорационный блок, состоящий из верхней (8) и нижней (9) опор, жестко закрепленных в корпусе, и расположенных между ними прокалывающих инструментов, обращенных тыльными сторонами друг к другу и выполненных с возможностью радиального перемещения при воздействии на них клинообразной частью клина-поршня. По меньшей мере одна боковая поверхность указанного инструмента снабжена направляющим выступом. В боковых стенках рабочего цилиндра выполнены сквозные прорези и по меньшей мере одно сквозное отверстие в виде сужающейся книзу прорези, кромки которой при возвратно-поступательном движении цилиндра контактируют с направляющим выступом прокалывающего инструмента, обеспечивая при этом его выход-вход из перфорационного блока. В боковых стенках корпуса в зоне между прикрепленными к нему верхней и нижней опорами перфорационного блока также выполнены сквозные прорези (18) для выхода сквозь них прокалывающих инструментов. Обеспечивается надежность работы устройства, конструктивное упрощение механизма прокалывания, а также ускорение процесса прокалывания. 8 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу изоляции притока подошвенных вод в нефтяных скважинах. Способ изоляции притока подошвенных вод в нефтяных и газовых скважинах включает остановку скважины, в которой уровень водонефтяного контакта перекрыл нижние отверстия интервала перфорации. Извлекают внутрискважинное оборудование из эксплуатационной колонны основного ствола. Устанавливают пакер-пробку на 1 м ниже водонефтяного контакта. Закачивают тампонажный состав, к примеру, на основе тампонажного портландцемента - ПЦТ-100 в нижний интервал перфорационных отверстий с последующим образованием водоизоляционного экрана. Спускают компоновку с фрезой в скважину. Разбуривают пакер-пробку. Поднимают компоновку с фрезой из скважины и спускают на колонне бурильных труб направляющую компоновку со сквозным каналом и выходным отверстием в комплекте с якорно-пакерующим устройством. Извлекают колонну бурильных труб с оставлением в эксплуатационной колонне направляющей компоновки. В направляющую компоновку спускают на гибкой трубе (ГТ) гидромониторную насадку до выходного отверстия сквозного отверстия направляющей компоновки. Струями песчано-жидкостной смеси (ПЖС) прорезают в стенке эксплуатационной колонны отверстие. После прорезания в стенке эксплуатационной колонны отверстия ПЖС заменяют на раствор на углеводородной основе (РУО). Струями РУО под высоким давлением размывают цементный камень за эксплуатационной колонной и последующим перемещением гидромониторной насадки в радиальном направлении размывают водоизоляционный экран и горную породу продуктивного пласта с образованием удлиненного радиального ответвления. После образования первого радиального ответвления из скважины извлекают ГТ с рукавом высокого давления и гидромониторной насадкой. Проводят поворот направляющей компоновки в той же плоскости на 45 градусов и проводят аналогичные операции по проводке следующего радиального ответвления. Далее аналогичные операции по проводке последующих радиальных ответвлений проводят после поворота направляющей компоновки на следующие 45 градусов. После проведения операции по бурению радиальных каналов в одной плоскости продуктивного пласта проводят бурение радиальных каналов ниже этой плоскости, но в толщине имеющегося водоизоляционного экрана. После проводки всех запланированных радиальных ответвлений через них осуществляют закачивание водоизоляционной композиции (ВИК) с созданием водоизоляционного экрана по радиусу, обеспечивающего пространственный и долговременный барьер на пути движения ВНК, и оставлением цементного стакана в полости скважины не выше водоизоляционного экрана. Техническим результатом является повышение эффективности проведения водоизоляционных работ в нефтяных скважинах, образование протяженного и мощного по толщине водоизоляционного экрана. 7 ил., 2 табл.

Изобретение относится к устройствам для создания щелевых отверстий в обсадных колоннах, цементном камне и горной породе. Гидропескоструйный перфоратор содержит корпус с отверстиями, в которых установлены струйные насадки, размещенную в корпусе подвижную втулку, связанную с запорным элементом, соединенным с подвижным стержнем, седло запорного элемента, установленное в патрубке, соединенном с корпусом. Подвижный стержень соединен с подпружиненным подвижным стаканом, в торцевой части которого выполнены отверстия. В отверстия подвижного стакана установлены втулки, закрепленные с помощью прижима. Струйные насадки расположены вдоль корпуса по спирали. В подвижной втулке выполнен паз, в который заведен конец пробки, установленной в отверстии корпуса. Пружина подвижного стакана отделена от подвижного стержня трубчатыми элементами. Обеспечивается повышение надежности работы перфоратора. 4 ил.

Изобретение относится к детонирующим устройствам, срабатывающим при механическом воздействии для обеспечения детонации в кумулятивных перфораторах. Многоразовый узел соединения и передачи детонации кумулятивного корпусного перфоратора содержит передающую и приемную части, соединенные между собой разъемным шарнирным соединением. В передающей части в центральном канале установлены первый детонирующий шнур и детонатор, а в приемной части - второй бустер и второй детонирующий шнур. Передающая часть выполнена в виде первого корпуса с центральным каналом. Первый корпус соединен с внешней втулкой, между которыми зажат сменный диск, уплотненный по торцу резиновым кольцом. Приемная часть выполнена в виде второго корпуса со вторым центральным каналом, имеющим коническое отверстие, в котором установлена коническая втулка. Обеспечивается возможность повторного использования отдельных элементов узла соединения. 5 з.п. ф-лы, 9 ил.

Группа изобретений относится к области бурения и эксплуатации нефтяных, газовых и нагнетательных скважин, а именно к прокалывающим гидроклиновым перфораторам. Перфоратор состоит из корпуса (К) 1 и установленных в первом и втором вариантах последовательно внутри него в верхней части механизма прокалывания и ниже него одного или более плунжеров 2. По третьему варианту механизм прокалывания установлен ниже плунжера 2. По первому и второму вариантам механизм прокалывания состоит из клиновидного узла 4, жестко закрепленного на К 1, установленного неподвижно и направленного клиновидной частью вниз; по третьему варианту клиновидный узел (КУ) 4 также закреплен на К 1 неподвижно и установлен клиновидной частью вверх в нижней части К 1. В состав механизма прокалывания (МП) по всем вариантам входит поршень-толкатель (ПТ) 5 и рабочий орган в виде, по меньшей мере, двух рычагов (Р) 6, каждый из которых снабжен с одного конца прокалывающим инструментом (ПИ) 7. Вторым концом 9 Р 6 закреплен на ПТ 5 с возможностью поворота от оси этого ПТ 5. Второй конец 9 Р 6 закреплен на ПТ 5, выполненном с возможностью возвратно-поступательного перемещения под воздействием плунжера 2. КУ 4 установлен так, чтобы по его клиновидной поверхности была обеспечена возможность продвижения под воздействием ПТ 5 верхних частей Р 6 с ПИ с постепенным выходом в сквозные прорези 11 К 1. Перфоратор по первому и второму вариантам снабжен осевым трубчатым каналом 12 для обеспечения прохождения при работе рабочей жидкости через осевой гидроканал 13 КУ 4, ПТ 5, плунжера 2 в нижнюю часть К 1. По всем трем вариантам, по меньшей мере, один плунжер 2 выполнен подпружиненным. По первому варианту ПИ 7 и соответственно Р 6 в зоне их соприкосновения имеют сквозные гидроканалы 14 и 15 соответственно с гидромониторными насадками. В теле КУ 4 также выполнен, по меньшей мере, один намывной гидроканал 16, гидравлически сообщающийся с его осевым гидроканалом 13. Р 6 с ПИ 7 выполнены с возможностью перемещения вверх-вниз относительного КУ 4 под воздействием ПТ 5 с обеспечением при поступательном перемещении вверх совмещения намывного гидроканала 16 клиновидного узла 4 с гидроканалом 15 рычага 6 и соответственно с гидроканалом 14 ПИ 7 (фиг. 1). По второму и третьему вариантам гидроканал 17 выполнен в теле Р 6 продольным и сразу переходящим в гидроканал 14 ПИ 7. Причем в ПТ 5 выполнен сквозной гидроканал 18, соединенный с указанным гидроканалом 17 Р 6. Гидроканал 18 ПТ 5 соединен с гидроканалом 17 Р 6. Обеспечивается возможность прокалывать обсадные трубы любого диаметра, при одновременном обеспечении надежности работы за счет конструктивного упрощения механизма прокалывания в предлагаемом перфораторе и за счет снижения вероятности заклинивания прокалывающего инструмента. 3 н. и 20 з.п. ф-лы, 5 ил.
Наверх