Способ получения нанокапсул лекарственных растений, обладающих седативным действием



Способ получения нанокапсул лекарственных растений, обладающих седативным действием
Способ получения нанокапсул лекарственных растений, обладающих седативным действием
Способ получения нанокапсул лекарственных растений, обладающих седативным действием

 


Владельцы патента RU 2613761:

Кролевец Александр Александрович (RU)

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании при 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, причем соотношение ядро:оболочка в случае получения нанокапсул настойки пустырника составляет 1:3, 1:1, 5:1 или 1:5, в случае получения нанокапсул настойки валерьяны 1:3, 1:1, 5:1, 1:5, в случае получения нанокапсул настойки пиона уклоняющегося 1:3, 1:5. Изобретение позволяет упростить и ускорить процесс получения нанокапсул и увеличить выход по массе. 3 ил., 11 пр.

 

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих седативным действием, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - настойки пустырника, валерьяны, пиона уклоняющийся.

Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием натрий карбоксиметилцеллюлозы в качестве оболочки частиц и настоек лекарственных растений, обладающих седативным действием - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих седативным действием.

ПРИМЕР 1. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:3

5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:1

5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 5:1

25 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул настойки пустырника, соотношение ядро:оболочка 1:5

5 мл настойки пустырника добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:3

5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:1

5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 5:1

25 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:5

5 мл настойки валерьяны добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул настойки пиона уклоняющийся, соотношение ядро:оболочка 1:3

10 мл настойки пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 10. Получение нанокапсул настойки пиона уклоняющегося, соотношение ядро:оболочка 1:5

10 мл настойки пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 11. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834 (Рис. 1-3).

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215 s, использование шприцевого насоса.

Способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий карбоксиметилцеллюлозы в ацетоне в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании при 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, причем соотношение ядро:оболочка в случае получения нанокапсул настойки пустырника составляет 1:3, 1:1, 5:1 или 1:5, в случае получения нанокапсул настойки валерьяны 1:3, 1:1, 5:1, 1:5, в случае получения нанокапсул настойки пиона уклоняющегося 1:3, 1:5.



 

Похожие патенты:
Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении газовых сенсоров. Предложен способ изготовления газовых сенсоров, содержащих корпус, установленную в нем на основании двухслойную наноструктуру ZnO-ZnO:Cu, точечные контакты, соединенные с выводами корпуса, помещенными в изолятор и штуцер, обеспечивающий контакт детектируемого газа с чувствительным элементом.

Изобретение относится к способу получения нанокапсул метронидазола в конжаковой камеди. Указанный способ характеризуется тем, что в суспензию конжаковой камеди в бутаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок метронидазола, затем добавляют 10 мл четыреххлористого углерода, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.

Изобретение относится к оптическим технологиям формирования топологических структур на подложках, в частности к лазерным методам формирования на подложках топологических структур нано- и микроразмеров для нано- и микромеханики, микро- и наноэлектроники.

Изобретение относится к светотехнике и может быть использовано при изготовлении светодиодов, используемых в лампах дневного света, светильниках, автомобильных фарах, архитектурном, дизайнерском или тепличном освещении.

Изобретение относится к области нанотехнологии, фармацевтики и пищевой промышленности и раскрывает способ получения нанокапсул гидрокарбоната натрия в альгинате натрия.

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул АСД в конжаковой камеди. Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в конжаковой камеди характеризуется тем, что АСД 2 фракция диспергируют в суспензию конжаковой камеди в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл хлористого метилена, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро : оболочка составляет 1:1 или 1:3.

Изобретение относится к области нанотехнологии, ветеринарии и растениеводства. Способ получения нанокапсул солей металлов в агар-агаре характеризуется тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра - соль металла при массовом соотношении ядро : оболочка 1:3, при этом соль металла добавляют в суспензию агар-агара в метаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, далее приливают 10 мл гексана, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области металлургии, а именно к нанотехнологии азот-углеродсодержащих соединений титана, которые могут быть использованы в композиционном материаловедении, в том числе в составе модифицирующих комплексов алюминиевых, железо-углеродистых и никелевых сплавов.
Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины.

Изобретение относится к способу получения нанокапсул метронидазола в конжаковой камеди. Указанный способ характеризуется тем, что в суспензию конжаковой камеди в бутаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок метронидазола, затем добавляют 10 мл четыреххлористого углерода, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.

Изобретение относится к области нанотехнологии, фармацевтики и пищевой промышленности и раскрывает способ получения нанокапсул гидрокарбоната натрия в альгинате натрия.

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул АСД в конжаковой камеди. Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в конжаковой камеди характеризуется тем, что АСД 2 фракция диспергируют в суспензию конжаковой камеди в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 5 мл хлористого метилена, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро : оболочка составляет 1:1 или 1:3.

Изобретение относится к области нанотехнологии, ветеринарии и растениеводства. Способ получения нанокапсул солей металлов в агар-агаре характеризуется тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра - соль металла при массовом соотношении ядро : оболочка 1:3, при этом соль металла добавляют в суспензию агар-агара в метаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, далее приливают 10 мл гексана, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии, в частности к фармацевтике, и раскрывает способ получения нанокапсул солей металлов в агар-агаре. Способ характеризуется тем, что 100 мг соли металла (иодид калия, карбонат магния, цинка или кальция, хлорид кальция) диспергируют в суспензию 100 или 300 мг агар-агара в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, далее приливают 5 мл хлороформа, при этом мольное соотношение ядро:оболочка составляет 1:1 или 1:3, затем полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул экоцида С в альгинате натрия. Указанный способ характеризуется тем, что экоцид С по порциям добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/мин, затем приливают метиленхлорид, образующуюся суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.

Изобретение относится к способу получения нанокапсул метронидазола в альгинате натрия. Указанный способ характеризуется тем, что в суспензию альгината натрия в гексане и 0,01 г препарата Е472с добавляют порошок метронидазола, затем добавляют ацетон, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.

Изобретение относится к способу получения нанокапсул антибиотиков тетрациклинового ряда, выбранных из тетрациклина, доксициклина или миноциклина. Указанный способ характеризуется тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок антибиотика, затем добавляют 5 мл четыреххлористого углерода, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3 или 1:1.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, заключается в том, что 10 мл настойки валерьяны добавляют в суспензию конжаковой камеди в петролейном эфире, содержащую 3 г или 1 г конжаковой камеди в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул смеси биопага-Д с бриллиантовой зеленью. Указанный способ характеризуется тем, что к 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени, полученную смесь добавляют в суспензию 2,5 г или 7,5 г натрий карбоксиметилцеллюлозы в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества, полученную смесь ставят на магнитную мешалку и включают перемешивание, выпавшую суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Группа изобретений относится к области химико-фармацевтической промышленности, а именно к фармацевтическому составу клозапина с замедленным высвобождением в виде таблетки, покрытой пленочной оболочкой, содержащему 30,0-50,0 мас.% клозапина, 20,0-30,0 мас.% микрокристаллической целлюлозы, 4,0-6,0 мас.% моногидрата лактозы, 15,0-25,0 мас.% гидроксипропилметилцеллюлозы ГПМЦ К15М, 1,0-3,0 мас.% гидроксипропилметилцеллюлозы ГПМЦ 2910, 1,0-3,0 мас.% коллоидного диоксида кремния, 0,05-1,5 мас.% фармацевтически приемлемой соли стеариновой кислоты и 2,0-4,0 мас.% пленочной оболочки, которая включает поливиниловый спирт, диоксид титана, макрогол и приемлемые красители или смесь Опадрай II желтый; а также к способу получения такого фармацевтического состава.
Наверх