Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы

Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы, относится к пневмотранспорту, а именно к устройствам для вертикального и крутонаклонного пневмотранспорта сыпучих материалов, содержащих наночастицы. Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы, включает загрузочный питатель, смесительную камеру и вертикальный транспортный трубопровод. Транспортный трубопровод снабжен рассредоточенно установленными в нем поперечными перфорированными вставками и дополнительной съемной вставкой. Съемная вставка снабжена электродами с токопроводящими контактами. Фланцы снабжены токопроводящими выводами, подведенными к источнику постоянного тока. Между фланцами и трубопроводом установлены изоляторы. Технический результат: расширение области применения устройства за счет обеспечения улавливания наночастиц материала, содержащихся в вертикальном потоке движущейся материалогазовой смеси. 1 табл., 2 ил.

 

Устройство относится к пневмотранспорту, а именно к устройствам для вертикального и крутонаклонного пневмоподъема сыпучих материалов с возможностью выделения наночастиц, содержащихся в потоке движущейся материалогазовой смеси.

Известны устройства пневмоподъема частиц сыпучих материалов, содержащих загрузочный питатель, смесительную камеру, вертикальный транспортный трубопровод, снабженный рассредоточенно установленными в нем поперечными перфорированными вставками и фланцами (Патент RU №2194661, опубл. 20.12.2002, патент RU №2294886, опубл. 10.03.2007, патент RU №138223, опубл. 10.03.2014).

Недостатком этих устройств является невозможность улавливания наночастиц в процессе вертикального перемещения сыпучих материалов.

Задачей заявляемого устройства является расширение области его применения, обеспечивающее улавливание наночастиц материала, содержащихся в вертикальном потоке движущейся материалогазовой смеси.

Поставленная задача достигается тем, что в устройстве для пневмоподъема сыпучих материалов, содержащих наночастицы, включающем загрузочный питатель, смесительную камеру, вертикальный транспортный трубопровод, снабженный рассредоточенно установленными в нем поперечными перфорированными вставками и фланцами, вертикальный транспортный трубопровод снабжен дополнительной съемной вставкой, содержащей электроды и их токопроводящие контакты, а фланцы снабжены токоподводящими выводами, подведенными к источнику постоянного тока, причем между упомянутыми фланцами и трубопроводом установлены изоляторы.

На фиг. 1 изображено предлагаемое устройство; на фиг. 2 - траектории движения частиц: - область осаждения только мелких частиц; m - область осаждения как мелких, так и крупных частиц; i - область осаждения только крупных частиц.

Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы, содержит загрузочный питатель 1, установленный над патрубком 2 вертикального транспортного трубопровода 3. В нижней части смесительной камеры 4 установлены патрубок 5 для подвода сжатого воздуха и пористая газораспределительная перегородка 6. В транспортном трубопроводе 3 рассредоточенно установлены поперечные перфорированные вставки 7 со своими фланцами 8. Кроме этого вертикальный транспортный трубопровод 3 снабжен дополнительной съемной вставкой 9. Внутрь съемной вставки 9 вмонтирована система электродов (коронирующие и осадительные электроды) 10. Для подпитки электроэнергией электродов 10 вставка 9 снабжена токопроводящими контактами 11. Таким образом, во вставку 9 входит комплект электродов 10 и токопроводящих контактов 11. Фланцы 12 снабжены токопроводящими выводами 13, подведенными к источнику постоянного тока. Изоляторы 14 предназначены для разделения фланцев 12 с токопроводящими выводами 13 от транспортного трубопровода 3.

Сыпучий материал из загрузочного питателя 1 непрерывно поступает в смесительную камеру 4. Сжатый газ через газораспределительную пористую перегородку 6 подается под слой материала. После прохода через пористую газораспределительную перегородку 6 потоки газа аэрируют материал до псевдоожиженного состояния. Под действием избыточного давления газа, подаваемого через патрубок 5, псевдоожиженный материал подается в патрубок 2 вертикального трубопровода 3. Вся высота трубопровода 3 разделена поперечными перфорированными вставками 7 на отдельные участки. При наличии поперечных перфорированных вставок 7 частицы материала перемещаются по трубопроводу 3 в заторможенном состоянии со скоростью около 1 м/с. Частицы сыпучего материала, проходя через систему электродов 10 съемной вставки 9, приобретают электрический заряд и под действием электрического поля осаждаются на осадительных электродах, которые выполнены в виде экрана (на фиг. 1 не показано) с наноразмерными отверстиями, составляющими менее 0,1 мкм. В данном случае может использоваться пористая металлокерамика с открытыми порами.

После необходимого накопления на осадительных электродах частиц материала источник постоянного тока отключается. Для отделения наночастиц сыпучего материала съемные вставки 9 вынимаются и промываются. Наночастицы агрессивного сыпучего материала (например, пыль известковая) промываются индифферентной жидкостью (метиловый или этиловый спирт). После отмывки от наночастиц съемные вставки 9 возвращаются на место.

В процессе ионизации газовых молекул электрическим разрядом происходит зарядка частиц, содержащихся в пылегазовой смеси, а затем под действием электрического поля эти частицы осаждаются на осадительных электродах и таким образом выделяются из материалогазового потока. Для создания электрического поля, способного вызвать коронный разряд, коронирующие электроды присоединены к высоковольтному источнику постоянного тока.

Как известно, время пребывания газа в электрофильтре не превышает обычно несколько секунд. В течение этого времени на движение наиболее крупных частиц (радиусом более 100 мкм) основное влияние оказывает гравитационная сила, влияние кулоновской силы незначительно. Для более мелких частиц (радиусом около 10 мкм) гравитационная сила и кулоновская сила близки, а при дальнейшем уменьшении размеров частиц (до радиуса 1 мкм) влияние на их движение кулоновской силы возрастает. На движение наиболее мелких частиц (радиусом менее 0.1 мкм) гравитационная сила практически не оказывает влияния и основной силой является кулоновская сила (В.Н. Фенченко, О.В. Кравченко, В.И. Момот. Движение заряженных диэлектрических мелкодисперсных частиц в аппаратах электронно-ионной технологии / Восточно-Европейский журнал передовых технологий, 2012, №3/10. С. 50-53).

В общем случае частицы подвергаются воздействию кулоновской силы, а также аэродинамической силы вследствие взаимодействия между газом и частицами вдоль их траекторий движения.

Характеристики процесса движения микрочастицы в воздушной среде при температуре 10-30°С под действием электростатических и гравитационных полей сведены в табл. 1.

Действие электрического поля на заряженную частицу определяется величиной ее электрического заряда. При электроосаждении для частиц небольших размеров (порядка 0.1 мкм) отношение кулоновской силы к силе тяжести значительно превосходит это отношение для более крупных частиц (табл. 1), благодаря чему осуществляется процесс осаждения наночастиц, который невозможно провести под действием силы тяжести или центробежной силы.

В аппаратах электронно-ионной технологии желательно проводить обработку при увеличенной объемной плотности частиц в потоке. На фиг. 2 представлены траектории движения частиц, на которой видно разделение их по фракциям.

В результате можно осуществить процесс осаждения наночастиц, который невозможно выполнить под действием силы тяжести или центробежной силы.

Таким образом, заявленное устройство позволяет улавливать наночастицы сыпучего материала, содержащихся в вертикальном потоке движущейся материалогазовой смеси, что расширяет область его использования.

Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы, включающее загрузочный питатель, смесительную камеру, вертикальный транспортный трубопровод, снабженный рассредоточенно установленными в нем поперечными перфорированными вставками и фланцами, отличающееся тем, что вертикальный транспортный трубопровод снабжен дополнительной съемной вставкой, содержащей электроды и их токопроводящие контакты, а фланцы снабжены токоподводящими выводами, подведенными к источнику постоянного тока, причем между упомянутыми фланцами и трубопроводом установлены изоляторы.



 

Похожие патенты:

Изобретение относится к области транспортировки материалов, а именно к конструкции вакуумного устройства для разгрузки сыпучих пищевых, фармацевтических, химических и прочих материалов размером от от 0,1 до 10 мм.

Изобретение относится к экипировочным устройствам для локомотивов железнодорожного транспорта, конкретно к средствам заправки локомотивов песком на пунктах технического обслуживания локомотивов.

Устройство для непрерывного подъема сыпучих материалов содержит смесительную камеру для создания материаловоздушной смеси, вертикальные транспортный трубопровод с сопротивлениями в виде перфорированных перегородок и открытый загрузочный питатель с ограничителем, заполненный заданным столбом сыпучего материала высотой H, а также заслонку с осью ее поворота и утяжелителем для перекрытия потока сыпучего материала.

Изобретение относится к оборудованию для пневматической транспортировки сыпучих и мелкозернистых материалов. Система включает в себя узел загрузки материала и узел выгрузки, пневмокамерный насос с аэроднищем, содержащий загрузочную трубу для верхней загрузки материала, клапан для сброса сжатого воздуха, клапан для подачи замещающего воздуха, датчик уровня, электроконтактный монометр, дисковой затвор и транспортный трубопровод.

Изобретение относится к погрузочно-разгрузочным средствам сыпучих и пылевидных продуктов и может быть использовано для пневмотранспортирования по продуктопроводам закладочного материала на железнодорожном и водном транспорте, внутрискладских перевалок зерновых продуктов, на железобетонных заводах и в химической промышленности.

Изобретение относится к пневмотранспорту, а именно к выгрузке из гибкой оболочки (тары) сыпучих материалов, например глинозема, цемента и других агрессивных пылеобразующих материалов, с помощью сжатого газа.

Изобретение относится к пневмотранспорту, а именно к выгрузке из гибкой оболочки (тары) сыпучих материалов, например глинозема, цемента, угольной пыли и других пылеобразующих и агрессивных материалов, с помощью сжатого газа, и может быть использовано в металлургии, машиностроении, химической, строительной, горных предприятиях и других областях промышленности, связанных с переработкой сыпучих материалов.

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности.

Изобретение относится к области трубопроводного транспорта и может быть использовано при пневмотранспорте в импульсно-поршневом режиме порошковых и зернистых материалов.

Способ заполнения транспортных контейнеров заключается в том, что заполняют гранулятом транспортный контейнер (9) с гибкой пластиковой вкладкой (8), имеющей на лицевой стороне, по меньшей мере, один разъем для шланга (6), предназначенный для загрузки гранулята пластмасс, по меньшей мере, один разъем для шланга (7), предназначенный для отвода нагнетаемого транспортирующего воздуха из транспортного контейнера (9) наружу и, по меньшей мере, один разъем для шланга, предназначенный для опорожнения содержимого.

Устройство для непрерывного подъема сыпучих материалов содержит смесительную камеру для создания материаловоздушной смеси, вертикальные транспортный трубопровод с сопротивлениями в виде перфорированных перегородок и открытый загрузочный питатель с ограничителем, заполненный заданным столбом сыпучего материала высотой H, а также заслонку с осью ее поворота и утяжелителем для перекрытия потока сыпучего материала.

Изобретение относится к области трубопроводного транспорта и может быть использовано при пневмотранспорте в импульсно-поршневом режиме порошковых и зернистых материалов.

Способ конвейерной транспортировки порошка, включающего пыль, в канале транспортировки псевдоожиженного слоя от точки входа до по меньшей мере одной точки разгрузки включает подачу порошка в транспортировочный канал в точке входа, подачу газа в транспортировочный канал, так чтобы обеспечить псевдоожижение порошка в транспортировочном канале для транспортировки порошка к указанной по меньшей мере одной точке разгрузки ниже по потоку транспортировочного канала.

Изобретение относится к транспортированию сыпучих материалов в замкнутом цикле газа. Способ включает в себя периодический отбор частиц сыпучего материала из аэросмеси на участке обратной ветви посредством объемного отделителя.

Изобретение относится к пневматическим установкам нагнетательного типа для транспортирования кусковых грузов и может быть использовано на предприятиях горной и других отраслей промышленности.

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к области энергетического машиностроения. .

Изобретение относится к области энергетического машиностроения. .
Наверх