Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для придания поверхности гидрофобных свойств. Сущность изобретения состоит в том, что приготавливают реакционную смесь, состоящую из борной кислоты и катализатора, в качестве которого используют нитрат натрия, или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов B/Me в диапазоне 0,5-5, где Me=Na, или K, или Mg, или Sr, нанесение реакционной смеси на поверхность в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака при температуре в интервале от 900°C до 1100°C. Технический результат изобретения заключается в получении равномерных покрытий из нанолистов гексагонального нитрида бора на внутренних поверхностях, а также на поверхностях изделий сложной формы. 3 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину в интервале от 1 до 10 нм и характерный линейный размер в интервале от 100 нм до 5 мкм. Эти покрытия могут применяться в качестве носителя для катализаторов, а также для придания поверхности гидрофобных свойств.

Известен способ получения аэрогеля нанолистов нитрида бора из аэрогеля графенов, основанный на карботермическом восстановлении оксида бора графенами и одновременном азотировании по реакции: B2O3+3C+N2→2BN+3CO [М. Rousseas, et. al. ACS Nano 7-10 (2013) 8540-8546]. В качестве стартового материала для синтеза используются аэрогели графенов (представляющие собой углеродные нанолисты) плотностью 60-150 мг/см3 с площадью удельной поверхности около 1200 м2/г. Для достижения высокой степени химической чистоты (>95% BN) и кристаллической упорядоченности конечного продукта в качестве оптимальных условий обработки аэрогеля графенов рекомендован интервал температур 1600-1800°C. Снижение температуры обработки способствует существенному снижению площади удельной поверхности аэрогеля нанолистов нитрида бора.

Недостатком способа является использование дорогого аэрогеля графенов и проведение процесса при высоких температурах, что требует специального высокотемпературного оборудования с контролируемой газовой атмосферой.

Известен способ получения покрытия из нанолистов гексагонального нитрида бора, выбранный в качестве прототипа, представляющий собой процесс осаждения из паровой фазы и состоящий в реакции паров летучих оксидов бора и аммиака на подложке при высокой температуре [A. Pakdel, et. al. ACS Nano 5-8 (2011) 6507-6515]. Процесс проводят в горизонтальной трубчатой печи. В качестве реакционной смеси, выделяющей летучий оксид бора, используются порошки бора (B), оксида магния (MgO), оксида железа II (FeO). Синтез проводится в протоке реакционного газа аммиака (NH3) при температуре в интервале 900-1200°C. В этом способе нанолисты нитрида бора образуются на обрабатываемой поверхности в результате газотранспортного процесса, при котором пары летучего оксида бора переносятся к обрабатываемой поверхности.

Недостатком этого способа является невозможность получения равномерного покрытия на внутренних поверхностях изделий, например в каналах керамических носителей катализаторов. Это связано с тем, что увеличивается турбулентность газовых потоков в каналах, что приводит к преимущественному осаждению материала в начале канала, в результате чего внутрь канала поступает обедненная реакционная паровая смесь.

Задачей настоящего изобретения является создание технологичного способа получения функциональных покрытий на основе наноструктурированных листов гексагонального нитрида бора, позволяющего наносить равномерные покрытия на внутренних поверхностях.

Техническим результатом изобретения является повышение эффективности синтеза получения функциональных покрытий наноструктурированных листов нитрида бора на внутренних поверхностях.

Технический результат достигается следующим образом.

Способ получения покрытия из нанолистов нитрида бора включает приготовление реакционной смеси, состоящей из борной кислоты и катализатора, в качестве которого используют нитрат натрия, или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов B/Me в диапазоне 0,5-5, где Me=Na, или K, или Mg, или Sr, нанесение реакционной смеси в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака.

Реакционную смесь готовят в виде раствора в дистиллированной воде.

Реакционную смесь наносят на поверхность из водного раствора.

Термообработку слоя реакционной смеси проводят при температуре в интервале от 900°C до 1100°C.

Сущность изобретения

Сущность изобретения состоит в том, что нанолисты нитрида бора растут из реакционной смеси из борной кислоты и катализатора (нитраты Na, или K, или Mg, или Sr) при ее термообработке в аммиаке при температуре от 900°C до 1100°C. Таким образом, нанолисты образуются на обрабатываемой поверхности в том месте, где нанесена реакционная смесь. Реакционная смесь наносится на обрабатываемую поверхность из водного раствора, что позволяет получить равномерный слой из реакционной смеси на внутренних поверхностях путем их смачивания, пропитывания или распыления раствора.

Борную кислоту и катализатор (нитрат Na, или K, или Mg, или Sr), взятые в мольном соотношении B/Me в интервале от 0,5 до 5, где Me=Na или K или Mg или Sr, растворяют в дистиллированной воде.

При использовании реакционных смесей с соотношением катионов B/Me<0,5 снижается количество нанолистов на обрабатываемой поверхности и возрастает количество примесных фаз (тугоплавкие бораты и оксиды соответствующих Me), что приводит к снижению качества получаемого покрытия.

При использовании реакционных смесей с соотношением катионов B/Me>5 также снижается общее количество синтезируемых нанолистов нитрида бора на единицу площади поверхности покрытия за счет уменьшения количества катализатора.

Реакционную смесь наносят на обрабатываемую поверхность из водного раствора в виде слоя толщиной от 0,1 до 0,5 мм. Для этого обрабатываемую поверхность окунают в раствор, или смачивают, или наносят на нее раствор путем распыления. После высыхания раствора на обрабатываемой поверхности образуется равномерный слой реакционной смеси. Толщина этого слоя подбирается в каждом случае эмпирически в зависимости от требуемой толщины покрытия из нанолистов нитрида бора, а также от материала поверхности изделия.

Наиболее оптимальная толщина реакционной смеси составляет 0,1-0,5 мм. Нанесение слоя реакционной смеси тоньше 0,1 мм может привести к нарушению его сплошности и в результате к образованию неравномерного покрытия из нанолистов нитрида бора.

При использовании слоя реакционной смеси толщиной 0,5 мм аммиак не успевает диффундировать вглубь реакционного слоя, что может привести к росту количества примесей в покрытии за счет непрореагировавшей реакционной смеси. Формирование покрытия проводят на поверхностях изделий, изготовленных из материалов, которые инертны к реакционным смесям и устойчивы к воздействию реакционного газа (NH3) при температурах термообработки.

Изделие с нанесенным слоем реакционной смеси помещают в реактор и нагревают до температуры синтеза в интервале 900-1100°. Нагрев изделия до температуры синтеза осуществляют в атмосфере инертного газа (Ar) со скоростью 5°C в минуту. При температуре синтеза в реактор напускают аммиак до давления в 1 атм и изделие выдерживают в течение времени, необходимого для максимально полного протекания реакции между реакционной смесью и аммиаком, но не менее 30 минут. При температуре синтеза менее 900°C возможно неполное реагирование реакционной смеси с аммиаком, что приводит к росту количества примесных фаз и, как следствие, к снижению качества покрытия. При температуре синтеза выше 1100°C эффективность получения покрытия не возрастает, поэтому применение термообработки при температурах выше 1100°C нецелесообразно из соображений энергосбережения. Кроме того, сокращается перечень материалов, на которые возможно нанесение покрытий в среде аммиака. Длительность термообработки выбирают экспериментально в зависимости от материала изделия, типа и морфологии поверхности, на которую наносится покрытие и температуры термообработки.

После термообработки реактор с изделием охлаждают до комнатной температуры, продувают воздухом и извлекают изделие. Толщина конечного покрытия зависит от состава и толщины слоя реакционной смеси, температуры термообработки и длительности проведения синтеза. Увеличению толщины покрытия способствует увеличение линейных размеров отдельных нанолистов, что достигается путем увеличения температуры и длительности термообработки.

Компоненты реакционной смеси - борная кислота B(OH)3 и катализаторы, представленные нитратами Na, или K, или Mg, или Sr, - являются распространенными и дешевыми реагентами по сравнению с порошками бора и оксида железа (II).

Таким образом, изобретение способствует повышению эффективности получения функциональных покрытий из нанолистов гексагонального нитрида бора за счет использования более дешевых реагентов, а также позволяет получать равномерные покрытия на поверхностях изделий сложной формы, включая внутренние поверхности и полости.

Примеры осуществления способа

Пример 1

Борную кислоту и нитрат натрия, взятые в количествах, соответствующих соотношению B/Na=2, растворили в дистиллированной воде, раствор упарили на воздухе для получения более густой консистенции, позволяющей нанести слой раствора толщиной 0,5 мм на поверхность подложки кремния. Подложку с нанесенным слоем реакционной смеси поместили в изотермическую зону трубчатой печи, печь вакуумировали до 10-2 мбар и напустили аргон. Затем печь нагрели до 1000°C, напустили аммиак до 1 атм, выдержали 60 минут и охладили. В результате термообработки на поверхности подложки образовалось покрытие белого цвета. Рентгенофазовый анализ показал, что покрытие состоит из гексагонального нитрида бора с примесью оксида бора в количестве до 15 вес. %. Исследования на сканирующем электронном микроскопе показали, что покрытие состоит из листов графеноподобного материала с толщиной отдельных листов 2-5 нм и линейными размерами 0,5-2 мкм. Результаты приведены в таблице.

Пример 2

Борную кислоту и нитрат магния (Mg(NO3)2×6H2O), взятые в количествах, соответствующих соотношению катионов B/Mg=1, растворили в дистиллированной воде. Полученным раствором смочили внешнюю и внутреннюю поверхности тигля из прессованной керамики BN высотой 20 мм, наружным диаметром 15 мм и внутренним диаметром 7 мм. После просушивания раствора на поверхности тигля был слой реакционной смеси толщиной 0,1 мм. Тигель поместили в изотермическую зону трубчатой печи. Термообработку проводили аналогично примеру 1, но при температуре 1100°C в течение 30 минут. В результате термообработки на внутренней и внешней поверхностях тигля образовалось покрытие белого цвета. Рентгенофазовый анализ показал, что покрытие состоит из гексагонального нитрида бора с примесью оксида бора в количестве до 5 вес. %. Исследования на сканирующем электронном микроскопе показали, что покрытие состоит из листов графеноподобного материала с толщиной отдельных листов 1-4 нм и линейными размерами 0,2-0,8 мкм. Результаты приведены в таблице.

В таблице приведены примеры использования изобретения с разными составами реакционной смеси, толщиной слоя реакционной смеси, температурой и временем термообработки, а также свойства получаемого при этом покрытия из нанолистов нитрида бора. Символ «+» означает, что покрытие хорошего качества, т.е. сплошное с высокой концентрацией нанолистов, которые имеют характерный линейный размер в интервале от 100 нм до 5 мкм. Символ «-» означает, что покрытие плохого качества, т.е. несплошное. Символ «+-» означает, что покрытие сплошное, но нанолисты имеют характерный линейный размер менее 100 нм. Такие покрытия могут применяться в качестве гидрофобных, но малоприменимы в качестве носителя катализатора, т.к. имеют небольшую удельную площадь поверхности, поэтому такие покрытия можно охарактеризовать как удовлетворительного качества.

1. Способ получения покрытия из нанолистов нитрида бора, включающий приготовление реакционной смеси, состоящей из борной кислоты и катализатора, в качестве которого используют нитрат натрия или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов В/Ме в диапазоне 0,5-5, где Me=Na, или K, или Mg, или Sr, нанесение реакционной смеси в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака.

2. Способ по п. 1, в котором реакционную смесь готовят в виде раствора в дистиллированной воде.

3. Способ по п. 1, в котором реакционную смесь наносят на поверхность из водного раствора.

4. Способ по п. 1, в котором термообработку слоя реакционной смеси проводят при температуре в интервале от 900°С до 1100°С.



 

Похожие патенты:

Изобретение относится к коллоидным растворам различных наноформ гексагонального нитрида бора (h-BN) в жидких средах, а именно к получению гексагонального нитрида бора h-BN, растворимого в воде и полярных растворителях.

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при этом в качестве исходных реагентов используют порошок аморфного бора с размером частиц 1 мкм-100 мкм и порошок титана с размером частиц 1 мкм-100 мкм, причем используется микроволновой разряд мощностью от 50 кВт до 500 кВт и длительностью импульса от 100·10-6 с до 100·10-3 с, а рабочее давление азота составляет от 0,1 до 1 атмосферы.

Изобретение относится к коллоидным растворам различных наноформ гексагонального нитрида бора (h-BN) в жидких средах, а именно к получению гексагонального нитрида бора h-BN, растворимого в воде и полярных растворителях.

Изобретение относится к области получения синтетических сверхтвердых материалов, в частности поликристаллического кубического нитрида бора, в условиях высоких давлений и температур для использования в химической, инструментальной, электронной и ряде других отраслей промышленности.

Изобретение относится к получению материалов, способных интенсивно излучать свет в широком диапазоне спектра под воздействием фото-, электронного иэлектровозбуждения, стабильно в условиях высоких температур, радиации и химически агрессивных средах.
Изобретение относится к производству искусственных высокотвердых материалов, а именно к синтезу кубического нитрида бора, применяемого для изготовления абразивных инструментов на различных связках, а также лезвийного инструмента для металлообработки и гексагонального нитрида бора, используемого для синтеза кубического нитрида бора, в качестве высокотемпературной смазки, теплоизоляции, в косметических целях и т.д.

Изобретение относится к способам получения нитрида бора графитоподобной гексагональной структуры с индексом графитации "g"=1,7-2,5, который может быть использован для получения сверхтвердых кристаллических модификаций нитрида бора, в частности эльбора.

Изобретение относится к способам получения поликристаллических сверхтвердых материалов (СТМ) на основе плотных модификаций нитрида бора - кубического (КНБ) и вюрцитоподобного (ВНБ), которые могут быть использованы в качестве материалов для деталей аппаратов высокого давления, а также в инструментах для обработки различного рода износостойких материалов, в первую очередь при точении термообработанных сталей, серых и высокопрочных чугунов, никелевых сплавов, износостойких наплавок, вольфрамосодержащих твердых сплавов, железобетона, камня, пластмасс.

Изобретение относится к способам получения (синтеза) кубического нитрида бора (КНБ) в виде кристаллов при высоких давлении и температуре в области термодинамической стабильности КНБ и может быть использовано преимущественно в инструментальной отрасли промышленности.

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной на подложке, средства накачки активной среды, средства вывода генерируемых плазмонных импульсов.

Изобретение относится к технологии приготовления наноструктурированных композитов на основе высокопористых углеродных матриц, наполненных наночастицами золота.

Изобретение относится к светотехнике и может быть использовано при изготовлении светодиодов, используемых в лампах дневного света, светильниках, автомобильных фарах, архитектурном, дизайнерском или тепличном освещении.

Изобретение относится к области производства щебеночно-мастичных дорожных смесей и асфальтобетонов, применяемых для ремонтно-восстановительных работ и устройства новых слоев дорожных и аэродромных покрытий.

Группа изобретений относится к области био- и нанотехнологий в растениеводстве, используется в аэропонных и гидропонных технологиях. В способе выращивают растения с использованием наночастиц путем проращивания семян и последующего выращивания растений в асептических условиях на агаризованной питательной среде, содержащей наночастицы.

Изобретение относится к области металлургии, а именно к нанотехнологии азот-углеродсодержащих соединений титана, которые могут быть использованы в композиционном материаловедении, в том числе в составе модифицирующих комплексов алюминиевых, железо-углеродистых и никелевых сплавов.

Изобретение относится к строительству, а именно к неметаллической композитной арматуре, которая применяется для армирования термоизоляционных стеновых конструкций, монолитных бетонных и сборных конструкций, для использования в конструктивных элементах зданий в виде отдельных стержней, для армирования грунта основания зданий и сооружений, в том числе оснований автомагистралей и дорог, для анкеровки в грунте подпорных стен и сооружений.

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для придания поверхности гидрофобных свойств. Сущность изобретения состоит в том, что приготавливают реакционную смесь, состоящую из борной кислоты и катализатора, в качестве которого используют нитрат натрия, или калия, или магния, или стронция, взятых в количествах, обеспечивающих соотношение катионов BMe в диапазоне 0,5-5, где MeNa, или K, или Mg, или Sr, нанесение реакционной смеси на поверхность в виде слоя толщиной от 0,1 до 0,5 мм и термообработку в атмосфере аммиака при температуре в интервале от 900°C до 1100°C. Технический результат изобретения заключается в получении равномерных покрытий из нанолистов гексагонального нитрида бора на внутренних поверхностях, а также на поверхностях изделий сложной формы. 3 з.п. ф-лы, 1 табл., 2 пр.

Наверх