Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр методом рентгеновской съемки и выполняют обработку результатов для каждого контролируемого полуфабриката, причем в качестве места контроля выбирают деформированный во время последней операции термодеформационной обработки участок поверхности с преимущественным течением материала параллельно поверхности со степенью деформации не менее 10% и не более 50% с удаленным газонасыщенным слоем, в качестве градуировочной кривой используют зависимость соотношения интенсивностей дифракционных линий α-фазы L1=(101) или L1=(110) и L2=(002) от температуры Т (Т - разность температуры полного полиморфного превращения (Тпп) и температуры нагрева под деформацию (Тн)), а о перегреве вышезаданной технологией температуры судят по значению отношения интенсивностей дифракционных линий L1 и L2 выше, чем на градуировочной кривой для верхнего предела диапазона температур нагрева. Технический результат: обеспечение возможности неразрушающего экспресс-контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. 1 з.п. ф-лы, 2 ил., 2 табл.

 

Себестоимость изготовлении изделий сложной формы из двухфазных титановых сплавов часто определяется затратами на проведение операций механической обработки, например вытачивания, тогда как затраты на проведение термомеханической обработки полуфабрикатов незначительны. Подобная термомеханическая обработка часто проводится в верхнем интервале двухфазной α+β-области, где возможные перегревы полуфабриката в процессе нагрева под деформацию выше температуры полного полиморфного превращения (Тпп) являются недопустимыми и приводят к получению неисправимого брака. В связи с этим существует потребность в неразрушающих методах контроля качества термомеханической обработки на перегрев выше Тпп, позволяющих на ранних стадиях определить наличие перегрева и, таким образом, не проводить дальнейшие дорогостоящие операции на бракованном полуфабрикате (партии полуфабрикатов).

Примером такого случая может служить процесс изготовления лопаток газотурбинного двигателя, где затраты на вытачивание лопаток многократно превышают стоимость штамповки.

В настоящее время контроль полуфабрикатов на перегрев выше Тпп осуществляется выборочно с помощью металлографического контроля [1, 2], который является разрушающим методом контроля. Кроме того, данный метод контроля является высокотрудоемким и длительным и не исключает ошибок, связанных с субъективной оценкой структуры полуфабриката.

Технической задачей предлагаемого изобретения является реализация возможности неразрушающего экспресс-контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев.

Для решения указанной технической задачи предложено следующее:

1. Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа, включающий выбор места контроля и построение градуировочной кривой для каждого вида полуфабрикатов, получение дифракционного спектра методом рентгеновской съемки и обработку результатов для каждого контролируемого полуфабриката, причем в качестве места контроля выбирают деформированный во время последней операции термодеформационной обработки участок поверхности с преимущественным течением материала параллельно поверхности со степенью деформации не менее 10% и не более 50% с удаленным газонасыщенным слоем, в качестве градуировочной кривой используют зависимость соотношения интенсивностей дифракционных линий α-фазы L1=(101) или L1=(110) и L2=(002) от температуры T (T - разность температуры полного полиморфного превращения (Тпп) и температуры нагрева под деформацию (Тн)), а о перегреве выше заданной технологией температуры судят по значению отношения интенсивностей дифракционных линий L1 и L2 выше, чем на градуировочной кривой для верхнего предела диапазона температур нагрева.

2. Способ по п. 1, отличающийся тем, что полуфабрикаты, подвергаемые контролю, изготовлены из двухфазных титановых сплавов, содержащих более 5 мас. % алюминия.

Предлагаемый способ базируется на том факте, что в процессе высокотемпературной термодеформационной обработки изменяется текстурное состояние первичной α-фазы и β-фазы. Во время дальнейшего охлаждения полуфабрикатов и/или старения происходит выделение вторичной α-фазы с отличающимся от первичной α-фазы текстурным состоянием. При различных температурах нагрева термодеформационной обработки изменяется соотношение долей первичной и вторичной α-фаз, что предлагается фиксировать методом рентгеноструктурного экспресс-анализа по соотношению интенсивностей двух дифракционных линий, одна из которых формируется преимущественно от областей первичной α-фазы, например линия (00.2), а другая - от областей вторичной фазы, например линия (10.1) либо (11.0).

Пример

Это техническое решение подтверждено на примере исследования трех партий полуфабрикатов, предназначенных для изготовления лопаток газотурбинного двигателя, изготовленных из трех различных плавок титанового сплава ВТ8М (фиг. 1). Температуры Тпп плавок, из которых были изготовлены полуфабрикаты, представлены в таблице 1.

Термодеформационная обработка, требующая контроля на перегрев, проводилась в промышленных условиях и включала нагрев в термической печи и штамповку. После операции штамповки полуфабрикаты охлаждались на воздухе.

Построение градуировочной кривой производилось на полуфабрикатах из плавки 1 для температур нагрева в интервале 880…990°C. В качестве места рентгеновской съемки была выбрана полусередина на полувысоте пера лопатки со стороны спинки (фиг. 1, показано окружностью).

После охлаждения механическим способом проводилось удаление газонасыщенного (альфированного) слоя и производилась рентгеновская съемка интенсивностей дифракционных линий L1=(101) и L2=(002) α-фазы. В результате по данным, полученным на плавке 1, была построена градуировочная кривая, показанная на фиг. 2, где на оси абсцисс T - разность между температурой Тпп плавки и температурой нагрева, а на оси ординат - отношения интенсивностей дифракционных линий L1 и L2.

Проверка полученной градуировочной кривой проводилась на партиях 2 и 3 при температурах нагрева под штамповку (Тпп-10)°C и (Тпп+10)°C, где Тпп - температура полного полиморфного превращения соответствующей плавки сплава в соответствии с таблицей 1. Полученные значения отношений интенсивностей дифракционных линий L1 и L2 на данных полуфабрикатах приведены в таблице 2.

В соответствии с полученной градуировочной кривой все полуфабрикаты для изготовления лопаток из сплава ВТ8М, на которых после охлаждения с температуры штамповки зафиксировано соотношение дифракционных линий L1 и L2 более 0,75, являются перегретыми выше температуры Tпп, т.е. являются бракованными.

Таким образом, полуфабрикаты из партий 2 и 3, на которых зафиксировано отношения интенсивностей линий L1 и L2 0,93 и 0,95 соответственно, в процессе нагрева под штамповку были перегреты выше Тпп, что полностью соответствует используемым температурам нагрева (983 и 988°C соответственно).

Технический результат: неразрушающий метод экспресс-контроля качества термодеформационной обработки на перегрев, позволяющий осуществлять стопроцентный контроль полуфабрикатов. При использовании современных позиционно чувствительных детекторов рентгеновского излучения метод позволяет осуществлять съемку для контроля за время не выше 10 секунд.

Источники информации

1. ОСТ 1 90006-86. Заготовки из титановых сплавов для изготовления лопаток. Технические требования.

2. ОСТ 1 90002-86. Лопатки штампованные из титановых сплавов.

1. Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа, включающий выбор места контроля и построение градуировочной кривой для каждого вида полуфабрикатов, получение дифракционного спектра методом рентгеновской съемки и обработку результатов для каждого контролируемого полуфабриката, причем в качестве места контроля выбирают деформированный во время последней операции термодеформационной обработки участок поверхности с преимущественным течением материала параллельно поверхности со степенью деформации не менее 10% и не более 50% с удаленным газонасыщенным слоем, в качестве градуировочной кривой используют зависимость соотношения интенсивностей дифракционных линий α-фазы L1=(101) или L1=(110) и L2=(002) от температуры Т (Т - разность температуры полного полиморфного превращения (Тпп) и температуры нагрева под деформацию (Тн)), а о перегреве вышезаданной технологией температуры судят по значению отношения интенсивностей дифракционных линий L1 и L2 выше, чем на градуировочной кривой для верхнего предела диапазона температур нагрева.

2. Способ по п. 1, отличающийся тем, что полуфабрикаты, подвергаемые контролю, изготовлены из двухфазных титановых сплавов, содержащих более 5 мас. % алюминия.



 

Похожие патенты:

Использование: для определения компонентного состава потока многофазной жидкости. Сущность изобретения заключается в том, что устройство для определения компонентного состава потока многофазной жидкости содержит источник рентгеновского излучения и детектор, установленные по разные стороны трубы, по которой протекает поток многофазной жидкости, датчик для измерения давления, подключенный к трубе, датчик контроля и стабилизации интенсивности рентгеновского луча, источник рентгеновского излучения и волнодисперсионный спектрометр закреплены на одной оси, перпендикулярной оси симметрии трубы так, чтобы излучение от источника рентгеновского излучения к волнодисперсионному спектрометру проходило через окна, врезанные в трубу, причем в корпусе волнодисперсионного спектрометра расположен кристаллический монохроматор-анализатор, установленный под углом к лучу от источника рентгеновского излучения так, чтобы выполнялось условие Брэгга для линии излучения из спектра источника рентгеновского излучения, за кристаллическим монохроматором-анализатором по направлению распространения дифрагированного луча установлен сцинтилляционный счетчик ионизирующего излучения, а датчик контроля и стабилизации интенсивности рентгеновского излучения установлен за кристаллическим монохроматором-анализатором на одной оси с источником рентгеновского излучения.

Изобретение относится к использованию мягкого рентгеновского излучения для исследования сверхгладких оптических поверхностей и многослойных элементов, в частности для аттестации оптических элементов дифракционного качества.

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов от поверхности, измеряют энергетическое положение и величины пиков адатомов субнанослойной пленки и пиков атомов адсорбента (подложки) в энергетическом спектре отраженных ионов, по энергетическому положению пиков в спектре определяют типы адатомов и атомов подложки, затем такие измерения проводят на тест-объекте с различными концентрациями адатомов в пределах от чистой поверхности адсорбента (подложки) до одного моноатомного слоя, далее определяют зависимости величин пиков тест-подложки и адатомов от концентрации адатомов, по отношениям величин пиков адатомов и подложки анализируемого объекта и тест-объекта соответственно определяют концентрацию адатомов на поверхности анализируемого объекта, затем с использованием спектров для чистых массивных материалов подложки и адатомов по линейной экстраполяции определяют величины пиков для найденных концентраций, затем по отношениям измеренных пиков адатомов и подложки анализируемого объекта к линейно-экстраполированным величинам пиков определяют зарядовое состояние адатомов и атомов подложки (адсорбента).

Использование: для выполнения рентгеновского анализа образца. Сущность изобретения заключается в том, что выполняют облучение образца рентгеновскими лучами из полихромного источника рентгеновского излучения; используют комбинированное приспособление для регистрации XRD и XRF, содержащее сканирующий селектор длины волны и по меньшей мере один детектор рентгеновского излучения, предназначенный для регистрации рентгеновских лучей, выбранных селектором длины волны; и выполняют XRD-анализ образца путем выбора по меньшей мере одной фиксированной длины волны рентгеновских лучей, дифрагированных образцом, с использованием сканирующего селектора длины волны и регистрации рентгеновских лучей с выбранной фиксированной длиной волны (длинами волн) на одном или нескольких значениях угла φ дифракции на образце с использованием детектора (детекторов) рентгеновского излучения; и/или выполняют XRF-анализ образца путем сканирования длин волн рентгеновских лучей, испускаемых образцом, с использованием сканирующего селектора длины волны и регистрации рентгеновских лучей со сканированными длинами волн с использованием детектора (детекторов) рентгеновского излучения.

Изобретение относится к области строительства, в частности к цементной промышленности, и может быть использовано для контроля фазового состава, определяющего качество широко используемых портландцементных материалов.

Изобретение относится к области рентгенографических способов исследования тонкой структуры и может быть использовано для неразрушающего контроля внутренних напряжений с целью выявления признаков опасности развития хрупкого разрушения металлических деталей и изделий.

Изобретение относится к области металлургии и может быть использовано для изготовления емкостей сжиженных газов, низкотемпературного и криогенного оборудования, установок для получения сжиженных газов, оболочек ракет и емкостей для хранения ракетного топлива из стали 01Х18Н9Т.

Изобретение относится к аналитической химии и может быть использовано для определения происхождения пищевого этилового спирта. Cущность способа заключается в том, что используют детекторное устройство типа «электронный нос», матрицу которого формируют из 8 сенсоров на основе пьезокварцевых резонаторов объёмных акустических волн с базовой частотой колебаний 10,0 МГц с разнохарактерными пленочными сорбентами на электродах, для стабилизации покрытий для нехроматографических фаз применяют подложку из углеродных нанотрубок, покрытия массива селективные: к спиртам – полиэтиленгликоль адипинат, ПЭГА; к высшим спиртам, кетонам, эфирам - полиэтиленгликоль себацинат и полиэтиленгликоль ПЭГ-2000; к сложным эфирам – полиэтиленгликоль фталат, ПЭГФ; к серосодержащим соединениям, эфирам – Тритон Х-100, ТХ-100; к кислотам, воде, спиртам – дициклогексан-18-6,краун-эфир ( ДЦГ18К6/УНТ); к фенольным и другим ароматическим соединениям – триоктилфосфиноксид (ТОФО/УНТ); к кетонам – пчелиный клей (ПчК). Пробы каждого образца объемом 10,0 см3 помещают в стерильный стеклянный пробоотборник, выдерживают при температуре 20 ± 1 оС в герметичном сосуде с полимерной мягкой мембраной, 1 см3 равновесной газовой фазы отбирают шприцем и вводят в ячейку детектирования, фиксируют частоту колебаний пьезокварцевых резонаторов в течение 2 мин с интервалом 1 с. Графически формируют суммарный аналитический сигнал в виде «визуальных отпечатков» максимумов и с помощью программного обеспечения прибора аналитические сигналы сравнивают между собой и с эталонными «визуальными отпечатками», полученными при анализе качественных образцов, устанавливая степень их различия и схожести. Если степень сходства с каким-либо эталоном из базы данных составляет более 95 %, то делают вывод, что исследуемый образец изготовлен из того же сырья, что и этанол, если степень сходства составляет 90 - 95%, считают, что анализируемый этанол изготовлен из сырья с отличающимися от эталона свойствами либо выработан с технологическими нарушениями, если степень соответствия менее 90%, исследуемый образец сравнивается с эталоном спирта из другого сырья. Использование способа позволяет с высокой точностью определить подлинность анализируемых спиртных напитков. 1 табл., 2 ил., 1 пр.
Наверх