Способ низкотемпературного локального нагружения объекта при акустико-эмиссионном методе неразрушающего контроля

Использование: для неразрушающего контроля изделий. Сущность изобретения заключается в том, что создают локальное напряженно-деформированное состояние в конструкции путем охлаждения поверхности контролируемой зоны. На поверхность контролируемой зоны локально подводится низкотемпературная энергия, получаемая при воздействии на локальный участок контроля твердым диоксидом углерода СO2 «Сухой лед». Возникновение градиента температур в испытуемой зоне материала является причиной образования в нем напряженно-деформированного состояния, как следствие движения дислокаций, которые будут сопровождаться акустико-эмиссионными сигналами. Путем измерения энергии акустико-эмиссионных сигналов, инициированных движением дислокаций, определяются координаты выявленных дефектов и оцениваются критерии опасности выявленных дефектов. Технический результат: повышение достоверности обнаружения дефектов и производительности неразрушающего контроля при акустико-эмиссионном методе диагностирования. 3 ил.

 

Изобретение относится к неразрушающему контролю изделий акустическими, электромагнитными и другими методами и может быть использовано для обнаружения дефектов в различных изделиях машиностроения, транспорта и других отраслей промышленности.

Известны наиболее близкие к предлагаемому патенту аналоги:

1. (Патент RU №2478947 C1 «Способ контроля качества материалов методом акустической эмиссии». Автор(ы): Шкуратник Владимир Лазаревич (RU), Новиков Евгений Александрович (RU). Опубликовано: 10.04.2013 Бюл. №10). Суть изобретения заключается в том, что выполняют нагружение и регистрацию сигналов, возникающих при акустической эмиссии, далее АЭ, по которым определяют наличие трещиновидных дефектов, причем нагружение материала осуществляют путем его нагревания в диапазоне температур от 30°С до 200°С, выделяют огибающую активность возникающих при этом сигналов АЭ, а о наличии трещиновидных дефектов судят по наличию экстремального значения этой огибающей, не менее чем в полтора раза превышающего ее значения на границах указанного температурного диапазона;

2. (Патент RU 2534448 C1 «Способ контроля зоны термического влияния сварных соединений». Автор(ы): Лебедев Евгений Леонидович (RU), Храмков Александр Александрович (RU). Опубликовано: 27.11.2014 Бюл. №33). Суть изобретения заключается в локальном нагреве от внешнего источника исследуемой области сварного соединения с одновременным регистрированием возникающих при этом АЭ сигналов, инициированных движением дислокаций. Оценивание размера зоны термического влияния и контроль структурного состояния конструкционного материала в ней осуществляется при анализе значения энергии данных сигналов;

3. (Патент SU 1587438 A1 «Способ обнаружения дефектов в изделиях». Автор(ы): Эвина Тамара Яковлевна, Бигус Георгий Аркадьевич, Борщевская Диана Георгиевна, Переверзев Евгений Семенович. Опубликовано: 23.08.1990 г. Бюл. №31). Суть изобретения заключается в раскрытии поверхностных дефектов механическим нагружением изделия и уменьшения АЭ бездефектного материала предварительным локальным охлаждением поверхности. Изделие нагружают, локально охлаждают, наносят пенетрат и охлаждают повторно. При охлаждении образца регистрируют АЭ и по параметрам двух охлаждений судят о качестве изделий.

Недостатками известных способов являются:

1. Низкая производительность при нагружении охлаждением, необходимость использования дорогостоящих оборудований и расходных материалов, например, жидкий азот. Низкая достоверность обнаружения дефектов в связи с возникновением акустических помех при кипении жидкого азота и кристаллизации образованного конденсата на поверхности контроля;

2. При нагружении конструкций способом нагрева возникает высокая опасность контроля изделий с легковоспламеняющимися веществами;

3. При нагружении конструкции механическими способами существует высокая вероятность возникновения акустических помех.

Целью изобретения является повышение достоверности обнаружения дефектов и производительности неразрушающего контроля при диагностировании АЭ методом. Суть изобретения заключается в создании локального напряженно-деформированного состояния в конструкции путем охлаждения поверхности контролируемой зоны. Например, к испытуемой зоне локально подводится низкотемпературная энергия, получаемая при воздействии на определенный участок контроля твердого диоксида углерода СO2 «Сухой лед». Возникновение градиента температур в испытуемой зоне материала станет причиной образования в нем напряженно-деформированного состояния вследствие движения дислокаций, которые будут сопровождаться АЭ сигналами. Путем измерения энергии АЭ сигналов, инициированных движением дислокаций, выполняется контроль структурного состояния металла и оценивается наличие внутренних акустических инициаторов в виде дефектов сварки или сплошности.

Способ поясняется натурным экспериментом на примере распространенного в нефтехимической и нефтегазовой промышленности образца стального листового проката фиг. 1 (1) маркой Ст3Сп и геометрическими размерами длиной 1010 мм, шириной 1010 мм и толщиной 4 мм, схема которого представлена на фиг. 1. Естественно способ может быть применен и при контроле других объектов, подвергающихся периодическому контролю различными методами дефектоскопии с регистрацией сигналов контроля.

Настоящий способ осуществляют следующим образом:

С целью создания источника АЭ при низкотемпературном термическом нагружении, на стальной лист 1 наносится искусственная трещина 2 протяженностью 65 мм. Выбор способа локального низкотемпературного нагружения зоны листа осуществляется из позиций: безопасность, минимальный расход расходных материалов и производительность процесса. Этим критериям преимущественно отвечает способ низкотемпературной упругой деформации с использованием охладителя в виде сухого льда, в данном случае твердого диоксида углерода СO2 «Сухой лед», температура которого при твердом состоянии -72°С.

Оптимальная модель низкотемпературного нагружения участка листа с концентратором 2 представлена на фиг. 1, где, при указанной схеме расположения твердого диоксида углерода СO2 «Сухой лед», создается максимальное растягивающее напряжение на вершинах искусственной трещины 2 (фиг. 1). Контроль параметров упругой деформации в зоне охлаждения 3 (фиг. 1) и контроля распределения температурного поля на стальном листе сопровождается измерением температурного поля с применением термопар 4 (фиг. 1), моделью «ТХА (К)», при этом размещение термопар выбирается таким образом, чтобы измерения температур производились непосредственно под твердым диоксидом углерода СO2 «Сухой лед» и за его пределами (см. фиг. 1).

Обработка акустических сигналов во время низкотемпературного нагружения проводится с применением защищенных от влияния низких температур преобразователей акустической эмиссии (ПАЭ) фиг. 1 (5, 6, 7) с полосой пропускания АЭ сигналов от 100 до 300 кГц и вычислительным комплексом российской разработки АЭ «Эксперт 2104».

Низкотемпературное нагружение и регистрация АЭ проводится в течение 30 минут. Обработка сигналов АЭ искусственной трещины 2 (фиг. 1) показал, что большинство зарегистрированных АЭ сигналов, превышающих допустимый пороговый уровень и соответствующих координатам искусственной трещины 2 (фиг. 1), зарегистрированы в первые 30 мин нагружения (см. фиг. 2). Распределение температурного поля в ходе нагружения исследуемого материала представлена в виде полярного графика (см. фиг. 3).

Искусственная трещина 2 (фиг. 1) при этом определена по модифицированному локально динамическому критерию как дефект третьего класса опасности. Дополнительно проведен анализ на локально динамический критерий, где так же зафиксированы события, соответствующие первому классу опасности.

Данные показатели свидетельствуют о превышении внутреннего напряжения относительно предела прочности материала листа и, как следствие, рост искусственной трещины 2 (фиг. 1).

При замере протяженности искусственной трещины 2 (фиг. 1) ультразвуковым дефектоскопом «Мастер A1212» зафиксирован рост на 3 мм от первоначального размера, который составлял 65 мм.

Обработка и анализ данных источников АЭ показал, что зоны повышенной концентрации индикаций АЭ соответствуют фактическому местонахождению искусственной трещины 2 (фиг. 1). По критериям оценки результатов контроля опасность дефекта соответствует третьему классу, т.е. катастрофически активному источнику.

Таким образом, данный способ может быть использован при контроле сварных соединений и основного металла металлоконструкций при их эксплуатации. Преимуществом данного способа является то, что при создании напряженно-деформированного состояния методом локального охлаждения при помощи твердого диоксида углерода СO2 «Сухой лед», сторонние акустические помехи минимальны, например, если в качестве охладителя используется жидкий азот, то при кипении неизбежно возникают сторонние акустические помехи. За счет данных преимуществ повышается порог чувствительности прибора, повышается достоверность обнаружения и оценки дефектов, повышается производительность контроля и снижаются экономические затраты на расходные материалы за счет использования недорогого твердого диоксида углерода «Сухого льда».

Способ низкотемпературного локального нагружения объекта при акустико-эмиссионном методе неразрушающего контроля, включающий изготовление на образце в виде стальной пластины искусственной трещины, выбор мест расположения термопар для измерения распределения температурного поля и преобразователей акустической эмиссии для сбора и обработки акустических сигналов, создание упругой деформации локального участка в образце, отличающийся тем, что получение упругой деформации локального участка пластины достигается за счет локального низкотемпературного воздействия на поверхность объекта, что максимально исключает фиксацию ложных акустических сигналов в виде помех.



 

Похожие патенты:

Использование: для контроля состояния множества лопаток статора. Сущность изобретения заключается в том, что система содержит множество датчиков, выполненных с возможностью генерации сигналов акустической эмиссии (АЭ), которые представляют собой волны акустической эмиссии, распространяющиеся через множество лопаток статора.

Использование: для неразрушающего контроля методом акустической эмиссии (АЭ) для выявления течей, сухого трения, фазовых превращений, развивающихся трещин и пластического деформирования в технических устройствах различного назначения, а также для контроля параметров технологических процессов.

Изобретение относится к области неразрушающего контроля и технической диагностике промышленного оборудования, а именно к учебно-исследовательским стендам для изучения и демонстрации возможностей метода акустической эмиссии (АЭ).

Использование: для контроля и мониторинга объектов посредством акустической эмиссии. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь для приема сигналов акустической эмиссии имеет минимум три одинаковые по исполнению параллельные дублирующие друг друга линии регистрации акустической эмиссии (АЭ), состоящие из пьезоэлементов, прижимных прямых и обратных контактов, предварительных усилителей и соединительных проводников, которые располагаются в общем герметичном корпусе и разделяются защитными барьерами (перегородками и/или диэлектрическими средами).

Использование: для неразрушающего контроля и технической диагностики композиционных материалов на основе углепластиков акустико-эмиссионным методом. Сущность изобретения заключается в том, что осуществляют калибровку путем установки акустического преобразователя имитатора по дуге полуокружности, после чего зону контроля, ограниченную дугой полуокружности, разбивают на секторы, в которые последовательно устанавливают акустический преобразователь имитатора сигналов, задают минимальную амплитуду генератора имитатора, определяют времена прихода сигналов акустической эмиссии для построения годографа скоростей, после чего по годографу строится матрица разностей времен прихода и рассчитываются погрешности локации сигналов имитатора.

Группа изобретений относится к способу и устройству для контроля и/или оптимизации процессов течения, в частности процессов литья под давлением. В способе контроля и/или оптимизации процессов течения колебания, возникающие вследствие течения материала, регистрируются и оцениваются, причем спектр колебаний регистрируется и подвергается многомерному анализу в различные моменты времени или (квази) непрерывно.

Использование: для стендовых акустико-эмиссионных измерений при криогенных температурах. Сущность изобретения заключается в том, что способ стендовых акустико-эмиссионных измерений на образцах материалов при криогенных температурах включает проведение испытаний путем применения специального устройства - криотермоса, который собирается непосредственно на образце для испытаний, установку пьезопреобразователей акустической эмиссии через волноводы за пределами образца и разрыв образца с регистрацией сигналов акустической эмиссии.

Использование: для локации дефектов. Сущность изобретения заключается в том, что на контролируемом изделии устанавливают преобразователи акустической эмиссии, изделие нагружают, принимают сигналы акустической эмиссии, генерируемые дефектом изделия, при этом преобразователи акустической эмиссии устанавливают на объект контроля группами не менее трех в каждой, на расстоянии между центрами преобразователей в группе, не превышающем минимальной длины акустической волны, в каждой группе для каждого сигнала определяют разность фаз между сигналами, зарегистрированными преобразователями, по которым определяют углы, характеризующие направления распространения волны относительно каждой группы преобразователей, а координаты дефектов определяют по определенным математическим выражениям.

Использование: для тестирования свойственной прочности или жесткости твердых или сверхтвердых материалов. Сущность изобретения заключается в том, что устройство включает в себя держатель, компонент, индентор, держатель датчика и акустический датчик.

Использование: для регистрации сигналов акустической эмиссии. Сущность изобретения заключается в том, что сенсорный элемент для контроля системы с датчиком акустической эмиссии для регистрации акустической эмиссии содержит второй датчик для регистрации высоты температуры и/или градиента температуры и устройство оценки для формирования консолидированного и/или сжатого сенсорного сигнала посредством оценки сенсорного сигнала датчика акустической эмиссии с учетом второй измеряемой величины, причем формирование консолидированного и/или сжатого сенсорного сигнала в фазе нормального режима работы контролируемой системы осуществляется после фазы приведения в действие контролируемой системы.

Использование: для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы на основании акустического метода неразрушающего контроля. Сущность изобретения заключается в том, что осуществляют нагружение исследуемого объекта, регистрацию числа импульсов акустической эмиссии (АЭ) и их амплитуды, определение диагностического параметра WAE, связанного со степенью опасности дефектов, временем до разрушения, пределом прочности σ*, разрушающей нагрузкой Fp, и его сравнение с критическим значением [WAE] для определения степени опасности источника импульсов АЭ и работоспособности контролируемого объекта. Также данный способ оценки прочности позволяет производить оценку остаточного ресурса Nост. Технический результат: повышение точности контроля прочности кольцевых и сферических элементов сварного корпуса подводного аппарата. 6 ил., 2 табл.

Использование: для диагностики механических неустойчивостей и раннего предупреждения об опасности разрушения изделий и конструкций из алюминиевых сплавов, демонстрирующих полосообразование и прерывистую деформацию. Сущность изобретения заключается в том, что на поверхности конструкции вблизи наиболее нагруженной зоны устанавливают низкочастотный датчик акустической эмиссии (вибропреобразователь), при этом момент возникновения механической неустойчивости в виде полосы макролокализованной деформации определяют по первому всплеску сигнала акустической эмиссии длительностью порядка 10 миллисекунд и амплитудой выше пороговой, который является акустическим предвестником потери механической устойчивости, способной вызвать внезапное разрушение материала. Технический результат: обеспечение возможности неразрушающего контроля и диагностики состояния пластических неустойчивостей и раннего предупреждения об опасности разрушения изделий и конструкций из алюминиевых сплавов, демонстрирующих прерывистую деформацию и полосообразование, в основном авиационных сплавов системы Al-Mg. 6 ил.

Использование: для определения зон накопления структурных повреждений металлоконструкций при эксплуатации. Сущность изобретения заключается в том, что производят нагружение различных участков изделий индентором, регистрацию сигналов акустической эмиссии в процессе нагружения и по интервалу времени между началом индентирования и началом регистрации сигналов акустической эмиссии судят о степени накопления структурных повреждений металла на этих участках. Технический результат: обеспечение возможности оперативного определения наиболее опасных участков конструкции. 2 ил.

Использование: для проведения грузовых испытаний транспортно-установочного оборудования ракетно-космических и ракетных комплексов (ТУО). Сущность изобретения заключается в том, что на поверхность объекта устанавливают преобразователи акустической эмиссии (АЭ), объект нагружают пробной нагрузкой и одновременно производят регистрацию сигналов АЭ, классифицируют источники сигналов АЭ по степени опасности, при этом нагружение производят путем установки грузомакета фиксированной массы, подъема стрелы с установленным грузомакетом по специальной программе, позволяющей обнаружить опасные скрытые дефекты на этапах наиболее неблагоприятного сочетания действующих нагрузок и разработанной таким образом, чтобы суммарное время периода нагружения и периода регистрации сигналов АЭ не превышало длительность серии сигналов АЭ, сопровождающих развитие трещины; длительность серии сигналов АЭ предварительно определяют при разрушении образцов, изготовленных из материала, идентичного по химическому, фазовому и структурному составу материалу объекта, и толщиной, равной толщине стенок металлоконструкций объекта. Технический результат: обеспечение возможности своевременного выявления опасных скрытых дефектов на этапах нагружения транспортно-установочного оборудования ракетно-космических и ракетных комплексов (ТУО). 1 ил.

Использование: для неразрушающего контроля металлических конструкций с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что выполняют установку акустических преобразователей на конструкцию с образованием пьезоантенны и акустического преобразователя имитатора в зону, ограниченную пьезоантенной, выполняют калибровку конструкции, определяют скорость распространения сигналов акустической эмиссии на конструкции и определяют минимальную длительность двух временных «окон» по минимальному разбросу времен прихода и разности их времен прихода на акустические преобразователи, при этом времена прихода сигналов акустической эмиссии на датчики пьезоантенны определяются по максимальному значению отношения энергии сигнала во втором временном «окне» к энергии сигнала в первом временном «окне» и вычислению по ним координат дефектов. Технический результат: обеспечение возможности значительного повышения точности определения координат дефектов по сигналам акустической эмиссии и сокращение времени локации. 11 ил.
Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют регистрацию и обработку сигналов акустической эмиссии, при этом осуществляют сканирование изделия линейным индуктором, через который пропускают импульсный электрический ток плотностью, обеспечивающей отсутствие нагревания индуктора и достаточной для инициирования сигнала акустической эмиссии, при этом линейный индуктор жестко связан с пьезопреобразователем датчика акустической эмиссии на расстоянии не более диаметра пьезопреобразователя. Технический результат: обеспечение возможности с высокой достоверностью контролировать появление развивающихся трещин. 1 пр.
Наверх