Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации

Изобретение относится к устройствам для диспергирования капель или пузырей в микроканалах и может быть использовано для проведения процессов диспергирования газа в жидкости, одной жидкости в другой (эмульгирования), с сопутствующими реакционными, тепло- и массообменными процессами, например, для проведения процессов теплообмена, экстракции, газожидкостных реакций, реакций в системах жидкость-жидкость, абсорбции в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. В устройстве для диспергирования в жидкости капель или пузырей в микроканалах корпус состоит из камеры и микроканала. Камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры. К одному из концов камеры присоединен патрубок подачи сплошной жидкой среды. К другому концу камеры присоединен микроканал, в котором протекает основной технологический процесс. Патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере. Согласно способу применения устройства конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала. Техническим результатом группы изобретений является обеспечение возможности поддержания стабильных гидродинамических условий ведения процесса, достижение заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи. Кроме того, техническим результатом является расширение диапазонов расходов сплошной и дисперсной фаз, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами. 2 н. и 1 з.п. ф-лы, 8 ил., 1 табл., 2 пр.

 

Предлагаемое изобретение относится к устройствам для диспергирования капель или пузырей в микроканалах, в частности к аппаратам для проведения химических реакций и массообменных процессов, и может быть использовано для проведения процессов диспергирования газа в жидкости, одной жидкости в другой (эмульгирования), с сопутствующими реакционными, тепло- и массообменными процессами, например для проведения процессов теплообмена, экстракции, газожидкостных реакций, реакций в системах жидкость-жидкость, абсорбции в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности.

Известно устройство для диспергирования капель или пузырей в микроканалах и проведения массообменных и реакционных процессов в системах жидкость-жидкость и жидкость-газ (МПК7 С01В 3/26, С07С 5/03, С07С 5/00, С07С 5/10, пат. США №6632414, 2003 г.). Аппарат содержит корпус протяженной формы с установленным в нем монолитным катализатором, состоящим из большого числа микроканалов, расположенных параллельно друг другу, патрубки для ввода исходных компонентов в корпус, устройство для диспергирования газа. В микроканалы подают газ и жидкость (либо две несмешивающиеся жидкости). В аппарате с монолитным катализатором в зависимости от соотношения расходов газа и жидкости может быть реализован один из следующих основных режимов течения: пузырьковый, снарядный, взрывной (эмульсионный) и пленочный (кольцевой). Наиболее эффективным для проведения газожидкостных реакций принято считать снарядный (другие названия - тейлоровский, сегментированный) режимы течения, когда газ движется в виде вытянутых пузырей - "снарядов", отделенных друг от друга жидкостными снарядами (пробками) (Бауэр Т. Интенсификация гетерогенно-каталитических газожидкостных реакций в реакторах с многоканальным монолитным катализатором / Т. Бауэр, М. Шуберт, Р. Ланге, Р.Ш. Абиев // Журн. прикл. химии, 2006, Т. 79, №7, С. 1057-1066; Kreutzer, М.Т. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels / M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf // Chemical Engineering Science. - 2005. - V. 60 - P. 5895-5916). Благоприятными особенностями этого режима являются: хорошее перемешивание внутри жидкостных снарядов, возникающее при циркуляции в них жидкости, а также малая толщина пленки вокруг пузырей, что сокращает длину диффузионного пути для молекул газа.

К недостаткам известного устройства относятся: недостаточно равномерное распределение пузырьков и капель по сечению аппарата, изменение соотношения расходов жидкости и газа по длине аппарата в ходе вступления газа в реакцию с жидкостью, влекущее за собой изменение режима течения газожидкостной смеси в каналах. Кроме того, в известном изобретении не предусмотрены меры по формированию капель или пузырей дисперсной фазы с заданными размерами. Это приводит к тому, что в каждом из каналов формируются пузыри с большим разбросом размеров; большой разброс имеют также длины жидкостных снарядов. В итоге значительная часть микроканалов функционирует с показателями (коэффициентами тепло- и массообмена) существенно ниже расчетных значений, полученных исходя из предположения об идеальной картине формирования двухфазного потока в микроканалах.

Известно устройство - аналог предлагаемого изобретения - Т-образный смеситель (T-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем передавливания формирующегося в смесителе пузыря (капли). При этом пузырь (капля) формируется в узком микроканале, обтекаясь потоком жидкости - сплошной фазы, движущейся в виде тонкой пленки. На процесс формирования пузыря (капли) влияет большое количество факторов: касательные напряжения на его поверхности, перепад давления между лобовой и тыльной частями пузыря (капли), силы поверхностного натяжения на границе отверстия, из которого истекает пузырь (капля), а также межфазное натяжение на поверхности микроканала, которое может быть асимметричным ввиду различия углов натекания и оттекания в лобовой и тыльной частях пузыря (капли). Сложная гидродинамическая обстановка вокруг формирующегося пузыря (капли), а также влияние на него близости стенок микроканала и их шероховатости предопределяет существенную нестабильность условий получаемых пузырей (капель) и их размеров, равно как и размеров жидкостных снарядов между ними. Все это, как указывалось выше, обуславливает ухудшение коэффициентов тепло- и массообмена в микроканалах и ведет к снижению эффективности оборудования.

Известно устройство - аналог предлагаемого изобретения - Y-образный смеситель (Y-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем вытягивания и отрыва пузыря (капли). Большое количество влияющих условий и близость стенки микроканалов и в этом случае обуславливают нестабильность размеров получаемых пузырей (капель) и их, равно как и размеров жидкостных снарядов между ними. Таким образом, и в Y-образном смесителе складываются неблагоприятные условия для управления размерами элементов дисперсной и сплошной фазы, а значит, и показателями эффективности работы оборудования.

Наиболее близким по технической сущности к предлагаемому устройству является микрореактор (Ueno М., Hisamoto Н., Kitamori Т., Kobayashi S. Phase-transfer alkylation reactions using microreactors // Chem. Commun., 2003, pp. 936-937; Wegmann A., von Rohr P.R. Two phase liquid-liquid flows in pipes of small diameters // International Journal of Multiphase Flow, V. 32, 2006, pp. 1017-1028), представляющий собой трубку с поперечным диаметром от 100-200 мкм до 7 мм, ввод фаз в которую осуществляется либо под прямым углом (Т-образный смеситель), либо под острым углом примерно 30° (Y-образный смеситель).

К недостаткам известного устройства относятся невозможность регулировать условия диспергирования. Как и в устройствах-аналогах, в данном устройстве (в Т-образном и в Y-образном смесителях) складываются неблагоприятные условия для формирования размеров элементов дисперсной и сплошной фазы (капель и пузырей) и управления ими. Это приводит к ограничению области применения устройства узкими диапазонами расходов сплошной и дисперсной фаз, поскольку при изменении расходов существенно изменяется гидродинамическая обстановка в аппарате и нарушается благоприятный для тепло- и массообмена снарядный режим течения.

Задача предлагаемого изобретения заключается в поддержании стабильных гидродинамических условий ведения процесса, а именно в формировании в жидкости в микроканалах капель или пузырей с размерами, распределенными в достаточно узком диапазоне, а также обеспечение равного расстояния между соседними каплями или пузырями, что в итоге ведет к достижению заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи. Кроме того, задачей предлагаемого изобретения является расширение диапазонов расходов сплошной и дисперсной фаз, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами (физико-химическими свойствами сред и расходами компонентов). Еще одна задача предлагаемого изобретения - достижение возможности регулировать длину пузырей/плагов и слагов при заданном соотношении расходов фаз.

Поставленная задача достигается тем, что в устройстве для диспергирования в жидкости капель или пузырей в микроканалах, содержащем корпус, соединенные с ним патрубок подачи сплошной жидкой среды и патрубок подачи дисперсной жидкой или газообразной среды, согласно изобретению корпус состоит из камеры и микроканала, камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры, к одному из концов камеры присоединен патрубок подачи сплошной жидкой среды, а к другому присоединен микроканал, в котором протекает основной технологический процесс, при этом патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере.

Поставленная задача достигается также тем, что протяженная тонкостенная трубка сопряжена с корпусом устройства посредством подвижного соединения, а к протяженной тонкостенной трубке присоединен генератор механических колебаний.

Поставленная задача достигается также тем, что конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала.

Заявляемые устройство и способ позволяют обеспечить стабильные (распределенные в достаточно узком диапазоне) размеры пузырей или капель дисперсной фазы, а также равные расстояния между соседними каплями или пузырями - в каплях сплошной фазы (так называемых слагах). Это гарантирует практически одинаковые гидродинамические условия во всех элементах как сплошной, так и дисперсной среды - пузырях или каплях и слагах: интенсивность тейлоровских вихрей, время циркуляции в каждом элементе, а значит, и равномерное распределение по длине микроканалов коэффициентов тепло- и массоотдачи. В результате предлагаемое изобретение позволяет более полно использовать возможности микроканалов, т.е. при равной длине микроканалов в них достигается более высокие значения тепловых и массовых потоков, увеличивается выход реакций.

Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.

На фиг. 1 представлена схема предлагаемого устройства, на фиг. 2 - варианты расположения конца патрубка подачи дисперсной жидкой или газообразной среды в корпусе, на фиг. 3 - циркуляционные течения в пузырях (каплях) и слагах при реализации тейлоровского режима, на фиг. 4 - фотографии двухфазного течения (на примере системы вода-воздух) в микроканале в составе предлагаемого устройства, номера фотографий (A-G) соответствуют обозначениям поперечных сечений на фиг. 3; на фиг. 5 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями А и D; на фиг. 6 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 в сечении D; на фиг. 7 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями D и F; на фиг. 8 - предлагаемое устройство, оборудованное генератором механических колебаний 14 с боковым вводом 15 сплошной жидкой фазы в патрубок 2.

На фиг. 1 изображено предлагаемое устройство, содержащее корпус 1, соединенный с ним патрубок 2 подачи сплошной жидкой среды и патрубок 3 подачи дисперсной жидкой или газообразной среды. Корпус 1 состоит из камеры 4 и микроканала 5. Камера 4 выполнена в форме вытянутого эллипсоида и расположена в месте ввода сред в устройство через патрубки 2 и 3. Эллипсоид плавно сужается от срединного сечения к концам камеры 4, к одному из концов камеры 4 присоединен патрубок 2 сплошной жидкой среды, а к другому присоединен микроканал 5. В микроканале 5 протекает основной технологический процесс (химические реакции, тепло- и массообменные процессы), при этом патрубок 3 подачи дисперсной жидкой или газообразной среды имеет форму протяженной тонкостенной трубки 6, установленной соосно патрубку 2 подачи сплошной жидкой среды камере 4, а конец 7 трубки 6 расположен между плоскостью D максимального поперечного сечения камеры и плоскостью F присоединения к камере 4 микроканала 5.

Предлагаемое устройство работает следующим образом. При подаче сред через патрубки 2 и 3 с заданным расходом, в зависимости от расположения конца 7 трубки 6 в камере 4, в микрореакторе возникает течение двухфазной среды, при этом целевым режимом является так называемый снарядный (тейлоровский) режим.

При этом в микрореакторе образуются пузыри 9 или капли дисперсной фазы (в англоязычной литературе за ними закрепилось название plugs - «плаги»), отделенные друг от друга каплями 8 сплошной фазы (международное название slugs - «слаги»). На фиг. 3 показана схема циркуляционных течений, возникающих в пузырях/плагах 9 и слагах 8 при реализации тейлоровского режима, а также параболические профили скорости жидкости в них, характерные для ламинарного режима течения. Благодаря тормозящему действию стенок микрореактора по отношению к движущимся жидкостям и действующими на поверхности стенок касательными напряжениями в каплях (плагах и слагах) возникают тороидальные (так называемые тейлоровские) вихри 10 и 11, которые способствуют хорошему перемешиванию, как в дисперсной, так и в сплошной фазе. Так, молекулы 13 вещества в пузырях или каплях (плагах) 9 быстро перемещаются вихрями Тейлора 11, в то же время молекулы вещества 12 в сплошной жидкой фазе в виде капель (слагов) 8 сплошной среды интенсивно переносятся вихрями Тейлора 10, при этом направления движения молекул на поверхности контактирующих фаз 8 и 9 противоположны. В результате частого столкновения и взаимодействия молекул резко возрастает вероятность их контакта, сопровождающегося протеканием рассматриваемой химической реакции. Кроме того, тейлоровские вихри 10 и 11 переносят молекулы из центральных слоев капель 8 и 9 на поверхность. Это способствует чрезвычайно высокой интенсификации процесса, увеличению конверсии и выхода реакции. Аналогичная картина наблюдается и для процессов теплопереноса: теплота переносится от стенок микроканала внутрь конвекцией благодаря тейлоровским вихрям.

Экспериментальные исследования показали, что при расположении конца 7 тонкостенной трубки 6 между сечениями А и D двухфазное течение имеет нерегулярный характер и большой разброс размеров пузырей/плагов и слагов (фиг. 4, А, В, С). При расположении конца 7 тонкостенной трубки 6 между сечениями D и F наблюдается регулярное течением с довольно узким распределением размеров пузырей/плагов и слагов (фиг. 4, D, Е, F).

Таким образом, размещение конца тонкостенной трубки между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала позволяет:

1) обеспечить стабильность снарядного (тейлоровского) режима в миниканале 5;

2) регулировать длину пузырей/плагов и слагов при заданном соотношении расходов фаз за счет изменения положения конца 7 тонкостенной трубки 6.

При размещении в плоскости максимального поперечного сечения (сечение D) камеры 4 пузыри/плаги имеют длину, максимально достижимую при заданном соотношении расходов фаз, а по мере смещения конца 7 тонкостенной трубки 6 вправо, по направлению к плоскости присоединения к камере 4 микроканала 5 длина пузырей постепенно уменьшается (сечение Е), достигая минимального значения в сечении F. Смещение конца 7 тонкостенной трубки 6 правее плоскости присоединения к камере 4 микроканала 5 хоть и обеспечивает стабильный характер течения двухфазной среды, размер пузырей при этом начинает снова увеличиваться (фото на фиг. 4G), что затрудняет регулировку длину пузырей за счет смещения конца 7 тонкостенной трубки 6, поскольку зависимость длины пузырей от положения на участке F-G является возрастающей, а не убывающей, как на участке D-F (фиг. 5). Наличие для случая размещения конца 7 трубки 6 в сечении D в некоторых случаях приводит к образованию сателлитных (дочерних) пузырей малого диаметра; эти пузыри, как правило, по мере движения по микроканалу, движутся в следе длинных пузырей, быстро достигают их хвостовой части и сливаются с ними.

Как видно из фотографий, представленных на фиг. 4, при расположении конца 7 тонкостенной трубки 6 между сечениями А и D течение нестабильное, а размеры как пузырей/плагов, так и слагов имеют существенный разброс, что приводит к существенному различию в условиях протекания тепло- и массообменных процессов по длине микроканале, а в целом по микроканалу средняя интенсивность тепло- и массообмена снижается.

Указанные эффекты обусловлены различными механизмами формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями А и D (фиг. 5), в сечении D (фиг. 6) и между сечениями D и F (фиг. 7). Стрелками показаны векторы скорости v и порождаемые движением жидкости касательные напряжения τ.

При расположении конца 7 тонкостенной трубки 6 между сечениями А и D жидкость в камере 4 расширяется, при этом средняя скорость в поперечном сечении падает, а давление возрастает, т.е. градиент давления на участке А-D положительный (фиг. 5). Скорость порождает касательные напряжения - явления вытягивания, а также «откусывания» пузырей пережимающими потоками жидкости, а давление препятствует отрыву. Поступающий в камеру 4 газ расширяется, заполняя почти весь объем камеры 4. Далее возможны два сценария: этот пузырь может либо сразу оторваться (режим «заполнения камеры», фиг. 5б), формируя вытянутый пузырь 9 (показан на фиг. 1), либо его рост может продолжиться с затягиванием носика пузыря в микроканал 5, его вытягиванием и отрывом (режим «заполнения камеры и затягивания», фиг. 5в). При этом могут отрываться пузыри разной длины и с разной периодичностью, что ведет к образованию пузырей с широким разбросом размеров.

При расположении конца 7 тонкостенной трубки 6 в сечении D (фиг. 6) градиент давления в зоне выхода пузыря близок к нулю и торможения пузыря не происходит. Вначале происходит частичное заполнение части камеры 4, расположенной правее сечения D (фиг. 6а, б), затем конец пузыря затягивается в микроканал 5 (фиг. 6в) и отрывается (фиг. 6г). Вследствие того что объем исходного пузыря, заполнившего правую часть камеры 4, достаточно велик, образующийся основной пузырь 9а имеет длину, равную нескольким диаметрам микроканала 5. В некоторых случаях (фиг. 4D) образуются мелкие сателлитные пузыри 96, которые движутся в следе основных пузырей 9а, догоняя их и сливаясь с ними. Этот режим можно назвать режимом «частичного заполнения камеры, затягивания и отрыва».

На участке D-F градиент давления отрицательный в соответствии с уравнением Бернулли, поскольку скорость возрастает от сечения D к сечению F (фиг. 7). Таким образом, давление на правом конце пузыря способствует его более раннему отрыву от конца 7 трубки 6. Формируемый на конце 7 трубки 6 пузырек сразу затягивается в микроканал 5. В силу того что в зоне сужения камеры 4 на входе в микроканал 5 (между сечениями D и F) скорость жидкости выше, чем в широкой части камеры 4, касательные напряжения τ на поверхности пузыря высокие и он сразу вытягивается, приобретая «снарядообразную» (сигарообразную) форму. Кроме того, касательные напряжения τ на поверхности пузыря также способствуют его более раннему отрыву. Все это в комплексе приводит к регулярному отрыву пузырей малой и средней длины, без образования сателлитного пузыря (режим затягивания и отрыва, фиг. 7в). В результате пузыри имеют достаточно узкое распределение по размерам. При заданном расходе сплошной и дисперсной фаз длина пузыря зависит от конкретного расположения конца 7 трубки 6 между сечениями D и F: чем правее располагается конец 7 трубки 6, тем меньше длина пузыря (фиг. 4D-F). Таким образом, путем установки конца 6 протяженной тонкостенной трубки 7 между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала можно регулировать длину пузырей.

Расположение конца 7 трубки 6 правее сечения F, например в сечении G, приводит к некоторому увеличению размеров пузырей по сравнению с сечением F, что неудобно для управления размерами пузырей, имеющих большое значение для интенсификации тепло- и массопереноса (фиг. 4G). По этой причине конец 7 протяженной тонкостенной трубки 6 устанавливают между плоскостью D максимального поперечного сечения камеры 4 и плоскостью F присоединения к камере 4 микроканала 5.

Предлагаемое изобретение позволяет также расширить диапазоны расходов сплошной и дисперсной фаз, что достигается стабилизацией гидродинамики отрыва пузырей (фиг. 4D, E, F). Эксперименты, проведенные в широком диапазоне расходов сплошной и дисперсной фаз, показали результаты, аналогичные представленным на фиг. 4D, E, F. Все вышеуказанные закономерности для пузырей, относятся также к каплям дисперсной среды (плагам).

Согласно предлагаемому изобретению сопряжение патрубка 3 подачи дисперсной жидкой или газообразной среды с корпусом 1 устройства может выполняться посредством подвижного соединения (т.е. соединения, допускающего относительное перемещение патрубка 3 и трубки 6 относительно корпуса 1), при этом к патрубку присоединен генератор 14 механических колебаний, а патрубок 2 оснащен боковым вводом 15 сплошной жидкой фазы (фиг. 8). Колебания могут быть как продольными, так и поперечными. При включении генератора 14 трубка 6 совершает механические колебания (продольные или поперечные, показаны на фиг. 8 линиями с двунаправленными стрелками) относительно корпуса 1, благодаря силам инерции, действующим на присоединенную к пузырю массу жидкости, общий баланс сил, удерживающих пузырь на конце 7 трубки 6 и отрывающих пузырь, смещается в сторону отрывающих сил, и по этой причине пузыри отрываются, не достигая больших размеров. Кроме того, за счет стабилизации условий отрыва достигается более узкое распределение размеров пузырей и капель (слагов) между ними.

Таким образом, все отличительные признаки предлагаемого изобретения направлены на решение поставленной задачи.

Примеры конкретного выполнения

Пример 1. Гидрирование альфаметилстирола (α - метилстирола) в микроканале с использованием Т-образного смесителя.

Гидрирование АМС с помощью монолитного катализатора с активным элементом палладием (Pd) является модельной реакцией, так как она протекает при высоких скоростях реакции, а ее продуктом является только кумол.

Реакция имеет нулевой порядок относительно АМС при малой его концентрации, так как наблюдается его высокая адсорбция катализатором и первый порядок относительно водорода. Условия проведения реакции приведены в таблице. Палладий был нанесен на внутреннюю стенку микроканала диаметром 1 мм. Газ и жидкость подавались через патрубки Т-образного смесителя (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383): жидкость - через центральный патрубок, газ - через боковой.

Выбранному интервалу скоростей соответствует снарядный режим в микроканале. Исследования показали, что при использовании Т-образного диспергатора газа в микроканале наблюдается снарядный режим, но размеры пузырей имеют значительный разброс. Коэффициент вариации длины пузырей и слагов (жидкостных снарядов), определялся по известной формуле

где ML - средняя длина пузырей или слагов для заданного соотношения расходов жидкости и газа;

σL - среднее квадратическое отклонение длины пузырей или слагов для заданного соотношения расходов жидкости и газа.

Коэффициент вариации при использовании Т-образного смесителя колебался для длины пузырей в пределах от 0,3 до 0,6, а для слагов - от 0,4 до 0,75.

Измеренная скорость реакции составила при этих условиях 40 ммоль/ч (определялась по скорости убыли альфаметилстирола).

Пример 2. Гидрирование альфаметилстирола в микроканале с использованием предлагаемого изобретения.

Реакция, описанная в примере 1, была проведена с использованием предлагаемого изобретения. Конец 7 трубки 6 устанавливался в сечениях D, Е, F, при этом в микроканале устанавливался устойчивый снарядный режим течения (фиг. 4D-F), характеризуемый малым разбросом размеров пузырей и слагов.

Коэффициент вариации при использовании предлагаемого изобретения колебался для длины пузырей в пределах от 0,02 до 0,1, а для слагов - от 0,01 до 0,15.

Таким образом, при использовании предлагаемого изобретения разброс размеров пузырей в 6-15 раз меньше, а слагов - в 5-40 раз меньше, чем при применении традиционного Т-образного смесителя.

Измеренная скорость реакции составила при этих условиях 65 ммоль/ч (определялась по скорости убыли альфаметилстирола), что на 75% выше, чем при применении «традиционного» Т-образного смесителя. Указанный эффект достигается за счет интенсификации перемешивания в жидкостных снарядах (слагах), скорость которого зависит от их длины, а также за счет практически одинаковых размеров пузырей и слагов. Поскольку в микроканале отсутствуют чрезмерно длинные пузыри и слаги, не происходит снижения эффективности массообмена, наблюдаемого в «традиционном» Т-образном смесителе. При использовании предлагаемого изобретения в мкироканале создаются практически одинаковые гидродинамические условия во всех элементах как сплошной, так и дисперсной среды - пузырях или каплях и слагах: интенсивность тейлоровских вихрей, время циркуляции в каждом элементе, а значит, и равномерное распределение по длине микроканалов коэффициентов массоотдачи.

Приведенные примеры показывают существенный эффект при использовании предлагаемого изобретения.

1. Устройство для диспергирования в жидкости капель или пузырей в микроканалах, содержащее корпус, соединенные с ним патрубок подачи сплошной жидкой среды и патрубок подачи дисперсной жидкой или газообразной среды, отличающееся тем, что корпус состоит из камеры и микроканала, камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры, к одному из концов камеры присоединен патрубок подачи сплошной жидкой среды, а к другому присоединен микроканал, в котором протекает основной технологический процесс, при этом патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере.

2. Устройство по п. 1, отличающееся тем, что протяженная тонкостенная трубка сопряжена с корпусом устройства посредством подвижного соединения, а к протяженной тонкостенной трубке присоединен генератор механических колебаний.

3. Способ применения устройства по пп. 1-2, заключающийся в том, что конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала.



 

Похожие патенты:

Настоящее изобретение предусматривает способ гидрообработки углеводородов с неравномерным распределением объема катализатора среди двух или более слоев катализатора.

Изобретение относится к получению синтетического аммиака каталитическим взаимодействием газообразного сырьевого потока, содержащего азот и водород. Реактор синтеза аммиака содержит вертикальный цилиндрический корпус, механически изолированные реакционные зоны с катализатором, расположенные друг над другом, газоходы для обхода реакционных зон газами, относящимися к другим реакционным зонам, и теплообменные трубки, находящиеся в слое катализатора для охлаждения реакционных зон.

Изобретение относится к области нефтехимии, в частности к реакторам дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды. Реактор с кипящим слоем мелкозернистого катализатора содержит вертикальный цилиндрический корпус, патрубок ввода паров сырья, соединенный с распределителем сырья в нижней части корпуса реактора, патрубки вывода контактного газа, ввода и вывода циркулирующего катализатора, секционирующие решетки с возрастающим по высоте реактора свободным сечением, разделяющие кипящий слой катализатора на секции, при этом между нижней секционирующей решеткой и распределителем сырья установлена успокоительная решетка, которая имеет свободное сечение больше, чем свободное сечение нижней секционирующей решетки, и составляющее более 25 и менее 90% от сечения корпуса, при этом расстояние от этой решетки до нижней секционирующей решетки составляет 0,5-2,0 высоты секции над нижней секционирующей решеткой.

Изобретение относится к способу селективного удаления газообразных продуктов реакции из газообразной системы, включающей реагенты и продукты, при проведении химических реакций, таких как синтез аммиака, метанола и т.д., и реакторам для проведения способа.

Изобретение относится к области химического машиностроения, а именно к каталитическому реактору для получения синтез-газа, который может быть использован в качестве инициирующих водородных добавок к основному топливу в двигатели внутреннего сгорания и в газотурбинных двигателях.

Изобретение относится к способу и устройству для окисления реагентов в водной реакционной среде с использованием газообразного молекулярного кислорода. Способ окисления материала в окислительном реакторе, включающем внешний циркуляционный контур, имеющий приспособление для увеличения давления во внешнем контуре, включает стадии: a) измерение концентрации кислорода в реакторе, b) выведение объема водной среды из реактора и измерение концентрации кислорода в этом объеме, c) введение кислорода в объем в растворенном виде и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме, d) введение объема обратно в реактор при повышенном давлении и через устройство Вентури в жидкостный распределитель, e) образование циркуляционной схемы в реакторе, в результате чего повышенная концентрация кислорода поддерживается в водной среде в нижней части реактора, и где внешний циркуляционный контур поддерживают под давлением во время проведения стадий c), d) и е).

Изобретение относится к сернокислотному производству и может быть использовано для утилизации отходящих сернистых газов предприятий цветной металлургии. Исходный сернистый газ с содержанием SO2 0,5-1,2 об.% нагревают в теплообменнике до температуры 250-300°С.

Изобретение относится к способу синтеза метанола в изотермических реакторах. Способ включает получение питающего потока свежего газа при риформинге или газификации, подачу свежего газа в замкнутую систему синтеза, конверсию свежего газа в метанол в каталитической среде, при этом тепло напрямую отводят из каталитической среды, в результате среда является изотермической, конденсацию метанола, при этом получают жидкий метанол-сырец и рециркулирующий газ, который направляют в рециркуляционную систему в замкнутой системе синтеза, причем каталитическая среда включает множество изотермических каталитических слоев, часть питающего потока свежего газа смешивают с рециркулирующим газом, при этом получают газообразную смесь свежего газа и рециркулирующего газа и часть газообразной смеси направляют между первым и вторым каталитическим слоем среды, газообразную смесь свежего газа и рециркулирующего газа смешивают с потоком, выходящим из первого каталитического слоя, при этом получают питающий поток второго каталитического слоя.

Изобретение относится к каталитической системе, подходящей для проведения частичного каталитического окисления при малой продолжительности контакта, для получения синтез-газа и, возможно, водорода.

Системы и устройства для перемешивания, охлаждения и распределения многофазных текучих смесей в реакторе, при этом внутриреакторное устройство настоящего изобретения обеспечивает не только улучшенное перемешивание и распределение текучей среды по поверхности каждого лежащего ниже слоя катализатора, но также имеет другие преимущества, включающие: уменьшенную высоту смесительной тарелки; облегченное техническое обслуживание, сборку и разборку; сниженную материалоемкость при производстве.

Изобретение относится к области нефтехимии, в частности к системе получения олефиновых углеводородов С3-С5 дегидрированием соответствующих парафиновых углеводородов, используемых в дальнейшем для получения основных мономеров синтетических каучуков, а также при производстве полипропилена, метилтретичнобутилового эфира и пр. Система включает реактор и регенератор с установленными по высоте кипящего слоя секционирующими решетками, ниже которых расположены трубчатые распределители соответственно паров сырья и воздуха, состоящие из коллекторов и соединенных с ними попарно расположенных, соосных лучей, снабженных соплами для вытекания газа в кипящий слой. При этом соосные лучи состоят из трубы, центральная часть которой, имеющая в боковой поверхности одно или несколько отверстий для затекания газа из коллектора в лучи, располагается в полости коллектора, а в полости трубы установлена диафрагма с центральным отверстием, разделяющая трубу и отверстия для затекания газа на две равные части, представляющие собой два симметрично расположенные луча. Отверстие в диафрагме имеет диаметр, равный (0,2-0,8) диаметра трубы. Расстояние между распределителями и нижними секционирующими решетками составляет (0,1-0,6) диаметра реактора или регенератора. Изобретение обеспечивает равномерное распределение газовых потоков в системе, повышение выхода целевого продукта - олефинов, а также снижение трудоемкости изготовления системы, и повышение прочности и эрозионной стойкости трубчатых распределителей. 2 з.п. ф-лы, 6 ил.

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода содержит нижнюю часть (2) с расплавом (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5а), подводящему водород на каждую первую ловушку, газосборную часть (6), пригодную для вмещения газовой смеси, содержащей продукт, один или несколько не удерживающих давление встроенных элементов (7) для непрерывного перемещения всей содержащей продукт газовой смеси, образовавшейся в нижней части (2) реактора, в газосборную часть (6). Один или несколько встроенных элементов содержат гетерогенный катализатор для дальнейшего превращения водорода и серы, присутствующих в содержащем продукт газе, в сероводород. Находящийся под давлением водород подают в расплав (3) серы, который вместе с серой, перешедшей из расплава (3) в газообразное состояние, по меньшей мере частично улавливают по меньшей мере одной не удерживающей давление первой ловушкой (4). Непрерывно перемещают всю содержащую продукт газовую смесь, образовавшуюся в нижней части реактора (2), в газосборную часть (6) посредством одного или нескольких не удерживающих давление встроенных элементов (7). Реактор (1) применяют для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Изобретение позволяет обеспечить степень превращения водорода более 99%, высокую чистоту получаемого сероводорода, компактную конструкцию и широкий диапазон изменения загрузки реактора. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к каталитическому реактору с улучшенной теплопередачей и способу осуществления в этом реакторе эндотермических химических реакций в газовой фазе. Реактор содержит реакторную камеру (1) и излучающую стенку для передачи тепла от внутренней поверхности (8) стенки реакторной камеры (1) за счет излучения для поддержания в целом эндотермической реакции в газовой фазе, протекающей в реакторной камере (1). Реакторная камера (1) имеет входной порт (2) для введения газообразного реагента в непрерывном режиме, выходной порт (3) для выхода газообразного продукта в непрерывном режиме, катализаторные сегменты (5), содержащие катализаторный материал (4), через который протекает газовый поток и вступает с ним в контакт, пустотные сегменты (6), в которых обеспечена возможность излучения тепла от внутренней поверхности (8) стенки к поверхности (9) катализаторного сегмента (5), образующей поверхность раздела между катализаторным сегментом (5) и пустотным сегментом (6), а также нагревательное средство для нагревания реакторной камеры (1). Наружная поверхность (15) стенки реакторной камеры (1) имеет температуру более высокую, чем внутренняя поверхность (8) стенки реакторной камеры (1). Реакторная камера (1) выполнена из материала, выдерживающего температуру 700°С или выше, с обеспечением возможности излучения теплового потока через внутреннюю поверхность (8) стенки в одном или большем количестве катализаторных сегментов (5) в диапазоне от 15 кВт/м2 до 100 кВт/м2. Катализаторные сегменты (5) содержат или представляют собой пористую структуру из металлической пены, обеспечивающую опору для катализатора или служащую в качестве катализатора, и имеют по одному пустотному сегменту (6) на обеих сторонах, а пустотный сегмент (6) содержит опорный элемент (10). Изобретение обеспечивает равномерное распределение температуры внутри реакторной камеры, повышение теплового излучения от внутренней поверхности стенки реакторной камеры и эффективный теплообмен. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к распределительному устройству для распределения жидкости и газа в многослойном реакторе с нисходящим потоком, реактору, содержащему такое распределительное устройство, к использованию таких распределительного устройства и реактора при обработке углеводородов и к способу распределения жидкости и газа в многослойном реакторе. Распределительное устройство содержит по существу горизонтально расположенную сборную тарелку, содержащую центральное проходное отверстие для газа и проходные отверстия для жидкости, расположенные вокруг центрального отверстия, завихритель, размещенный над сборной тарелкой вокруг центрального отверстия и содержащий лопатки, задающие направление завихрения потока и расположенные с возможностью придания вращательного движения газу, проходящему через центральное отверстие так, что газ выходит из центрального отверстия в виде вихря, закрученного в направлении завихрения вокруг вертикальной оси завихрения, одно или большее число эжекционных сопел, расположенных выше сборной тарелки и предназначенных для эжекции, в направлении эжекции, охлаждающей текучей среды в газ перед вводом газа в завихритель, при этом направление эжекции представлено в ортогональной системе из трех векторов эжекции, включающей радиальный вектор эжекции, проходящий перпендикулярно оси завихрения, осевой вектор эжекции, проходящий параллельно оси завихрения, и тангенциальный вектор эжекции, проходящий тангенциально по отношению к оси завихрения, причем эжекционное сопло ориентировано так, что тангенциальный вектор эжекции направления эжекции эжектируемой охлаждающей текучей среды направлен противоположно направлению завихрения. Изобретение обеспечивает эффективное равномерное распределение жидкости и газа в реакторе. 5 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к области нефтехимии, в частности к реакторам с кипящим слоем, в том числе к реакторам получения олефиновых углеводородов C3-C5 дегидрированием соответствующих парафиновых углеводородов, используемых в дальнейшем для получения основных мономеров синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и пр. Реактор содержит вертикальный цилиндрический корпус (1), патрубки ввода (11) и вывода (10) циркулирующего катализатора, трубопроводы ввода сырья (8) и патрубок вывода контактного газа (16), распределитель паров сырья (2) в нижней части корпуса (1), решетки (3) с возрастающим по высоте реактора свободным сечением, разделяющие зону кипящего слоя на секции (4) и циклоны очистки контактного газа (5) от катализаторной пыли в верхней части корпуса (1) с пылеспускными стояками (13), оборудованными клапанами (14) для возврата уловленного катализатора в кипящий слой. При этом по высоте корпуса (1) установлены патрубки (7), (6), соединенные с приборами для измерения соответственно температуры и перепадов давления, патрубки (7), (6) установлены группами с расположением патрубков (7), (6) в горизонтальной плоскости. Причем группы установлены по высоте корпуса (1) таким образом, что группа нижних патрубков (7), (6) расположена на уровне или выше распределителя паров сырья (2), а группа верхних патрубков (7), (6) - на уровне или ниже входа контактного газа в циклоны (5). Одновременно в кипящем слое катализатора группы патрубков (7), (6) установлены над верхней и под нижней решетками (3), а между этими решетками установлена одна или несколько групп патрубков (7), (6), причем между этими группами патрубков (7), (6) расположена одна или несколько решеток (3). Также предложен способ диагностики неисправностей реактора, при осуществлении которого в секциях (4) кипящего слоя катализатора между группами патрубков (7), (6) измеряют температуру и перепады давления и определяют количество катализатора в секциях. Изобретение обеспечивает увеличение показателей дегидрирования, а также снижение выноса катализатора из реактора. 4 н. и 27 з.п. ф-лы, 6 ил.

Изобретение относится к области каталитических реакторов с неподвижным слоем, применяемых для операций гидрообработки углеводородной загрузки, а также к способу применения и способу изготовления такого реактора. Каталитический реактор содержит герметичный корпус, в котором заключены слои твердого катализатора, разделенные промежуточной зоной, содержащей коллекторную тарелку, взаимодействующую с камерой смачивания, расположенной под коллекторной тарелкой, и патрубок для нагнетания смачивающей текучей среды, расположенный в коллекторном пространстве, находящемся в промежуточной зоне над коллекторной тарелкой и на периферии реактора. При этом нагнетательный патрубок выполнен в виде изогнутой трубки, содержащей единственное отверстие, выходящее в коллекторное пространство, причем отверстие находится на конце трубки. При этом конец нагнетательного патрубка содержит трубчатый участок, выполненный таким образом, чтобы нагнетать смачивающую текучую среду в коллекторное пространство по существу в горизонтальном направлении, образующем угол от -10° до +10° относительно направления, касательного к внутренней поверхности стенки корпуса на уровне выхода трубчатого участка, чтобы получать вращательное движение текучей среды на коллекторной тарелке. Изобретение обеспечивает усовершенствование смешивания смачивающей текучей среды с горячими текучими средами. 3 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к смесительному устройству вихревого типа для реактора гидроочистки с нисходящим потоком. Смесительное устройство содержит верхнюю горизонтальную тарелку с внутренней поверхностью, опорную тарелку, параллельно расположенную к верхней тарелке, с внутренней поверхностью и отверстием опорной тарелки, множество изогнутых внутрь лопастей, проходящих вертикально между внутренними поверхностями верхней и опорной тарелок, вертикальное кольцо затвора сливного отверстия, проходящее вертикально от внутренней поверхности опорной тарелки вблизи отверстия опорной тарелки, при этом кольцо затвора имеет верхний край и диаметр, зону смешения и пузырьковый колпачок, проходящий вниз от внутренней поверхности крышки смесителя в зону смешения, при этом пузырьковый колпачок имеет диаметр и нижний край, при этом диаметр пузырькового колпачка меньше, чем диаметр кольца затвора сливного отверстия, а нижний край пузырькового колпачка проходит ниже верхнего края кольца затвора сливного отверстия. Изобретение позволяет создать выраженный дугообразный поток для входящей в него газо-жидкостной смеси и высокую степень перемешивания между слоями катализатора в ограниченном пространстве реактора гидроочистки и обеспечивает повышение эффективности смесительной камеры для двухфазных систем, в которой происходит смешивание газовой и жидкой фаз. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к многослойному реактору с нисходящим потоком, содержащему смесительное устройство, а также применению такого реактора при переработке углеводородов и способу смешения жидкости и газа в данном реакторе. Реактор с нисходящим потоком содержит расположенные на расстоянии друг от друга в вертикальном направлении слои из твердого контактного материала и смесительное устройство, размещенное в межслоевом пространстве между соседними слоями. Смесительное устройство содержит контур из первых сопел, распределенных вокруг вертикальной оси и выполненных с возможностью эжектирования текучей среды в первом направлении эжекции в указанное межслоевое пространство, с одной стороны, и контур из вторых сопел, распределенных вокруг вертикальной оси и выполненных с возможностью эжектирования текучей среды во втором направлении эжектирования в указанное межслоевое пространство, с другой стороны. Первое направление эжекции ориентировано внутрь относительно контура из первых сопел. Второе направление эжекции ориентировано наружу по отношению к контуру их вторых сопел. Применение улучшенной системы смешения обеспечивает повышение производительности ректора. 3 н. и 10 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к многослойному реактору с нисходящим потоком, содержащему смесительное устройство, а также применению такого реактора при переработке углеводородов и способу смешения жидкости и газа в данном реакторе. Реактор с нисходящим потоком содержит расположенные на расстоянии друг от друга в вертикальном направлении слои из твердого контактного материала и смесительное устройство, размещенное в межслоевом пространстве между соседними слоями. Смесительное устройство содержит контур из первых сопел, распределенных вокруг вертикальной оси и выполненных с возможностью эжектирования текучей среды в первом направлении эжекции в указанное межслоевое пространство, с одной стороны, и контур из вторых сопел, распределенных вокруг вертикальной оси и выполненных с возможностью эжектирования текучей среды во втором направлении эжектирования в указанное межслоевое пространство, с другой стороны. Первое направление эжекции ориентировано внутрь относительно контура из первых сопел. Второе направление эжекции ориентировано наружу по отношению к контуру их вторых сопел. Применение улучшенной системы смешения обеспечивает повышение производительности ректора. 3 н. и 10 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к катализаторной компоновке для получения фталевого ангидрида окислением ароматических углеводородов в газовой фазе и к способу получения фталевого ангидрида. Катализаторная компоновка содержит реактор со стороной впуска газа для сырьевого газа, со стороной выпуска газа для получаемого газа, первым слоем катализатора из катализаторных тел и по меньшей мере одним вторым слоем катализатора из катализаторных тел, при этом первый слой катализатора расположен на стороне впуска газа, второй слой катализатора находится ниже по потоку от первого слоя катализатора в направлении газового потока, причём длина первого слоя катализатора в направлении потока газа меньше длины второго слоя катализатора в направлении потока газа. Первый слой катализатора имеет большую порозность по сравнению со вторым слоем катализатора. Технический результат - повышенный выход фталевого ангидрида и получение сырого фталевого ангидрида, имеющего относительно высокую чистоту. 3 н. и 15 з.п. ф-лы, 13 табл.

Изобретение относится к устройствам для диспергирования капель или пузырей в микроканалах и может быть использовано для проведения процессов диспергирования газа в жидкости, одной жидкости в другой, с сопутствующими реакционными, тепло- и массообменными процессами, например, для проведения процессов теплообмена, экстракции, газожидкостных реакций, реакций в системах жидкость-жидкость, абсорбции в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. В устройстве для диспергирования в жидкости капель или пузырей в микроканалах корпус состоит из камеры и микроканала. Камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры. К одному из концов камеры присоединен патрубок подачи сплошной жидкой среды. К другому концу камеры присоединен микроканал, в котором протекает основной технологический процесс. Патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере. Согласно способу применения устройства конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала. Техническим результатом группы изобретений является обеспечение возможности поддержания стабильных гидродинамических условий ведения процесса, достижение заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи. Кроме того, техническим результатом является расширение диапазонов расходов сплошной и дисперсной фаз, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами. 2 н. и 1 з.п. ф-лы, 8 ил., 1 табл., 2 пр.

Наверх