Малошумная турбина для редукторного турбовентиляторного двигателя

Двухконтурный газотурбинный двигатель используется в сочетании с понижающим редуктором для уменьшения скорости вращения вентилятора относительно скорости вращения турбины низкого давления. Раскрыты также турбинный модуль и способ его конструирования. Газотурбинный двигатель выполнен таким образом, что число лопаток в турбине низкого давления, умноженное на скорость вращения турбины низкого давления, приводит к образованию рабочего шума, который лежит за пределами диапазона чувствительности для человеческого слуха. Достигается снижение слышимого шума при заходе на посадку. 3 н. и 17 з.п. ф-лы, 1 ил.

 

Перекрестная ссылка на родственные заявки

[0001] Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США №61/592643, поданной 31 января 2012 г.

Уровень техники

[0002] Настоящая заявка относится к конструкции турбины, которая может работать, создавая шум, к которому менее чувствителен человеческий слух.

[0003] Газотурбинные двигатели являются известными и обычно содержат вентилятор, подающий воздух в компрессор. Воздух сжимается в компрессоре и поступает далее в секцию камеры сгорания, где он смешивается с топливом и воспламеняется. Газообразные продукты этого сгорания проходят далее к турбинным роторам, приводя их во вращение.

[0004] Обычно имеется ротор турбины высокого давления и ротор турбины низкого давления. Каждый из турбинных роторов содержит несколько рядов лопаток турбины, которые вращаются с ротором. В промежутках между рядами лопаток турбины расположены стационарные лопатки.

[0005] Турбина низкого давления может представлять собой значительный источник шума, поскольку шум возникает в результате динамического взаимодействия текучих сред между рядами лопаток и рядами сопловых лопаток. Такие взаимодействия создают звуковые тоны на частоте следования лопаток в каждой ступени турбины низкого давления и их гармоники.

[0006] Шум часто находится в диапазоне частот, к которым очень чувствителен слух человека. Для смягчения указанной проблемы в прошлом управляли соотношением стационарных и роторных лопаток, чтобы оно было выше определенного числа. Например, соотношение стационарных и роторных лопаток может быть выбрано 1,5 или больше для препятствования распространению на большое расстояние основного тона межлопаточного прохода. Это известно как "отсечка".

[0007] Однако акустически отсекающие конструкции могут быть реализованы за счет увеличения веса двигателя и ухудшения аэродинамических качеств. Иными словами, ограничение проектировщика конкретным соотношением стационарных и роторных лопаток влечет за собой ограничение в выборе такого соотношения на основании других характеристик проектируемого двигателя.

[0008] Традиционно турбина низкого давления приводила во действие секцию компрессора низкого давления и вентиляторную секцию. Позднее стали использовать понижающий редуктор, чтобы иметь возможность приводить во вращение вентилятор и компрессор низкого давления с различными скоростями.

Сущность изобретения

[0009] В характерном варианте реализации газотурбинный двигатель содержит вентилятор, компрессорную секцию, содержащую компрессор низкого давления и компрессор высокого давления, секцию камеры сгорания, турбину высокого давления и турбину низкого давления. Турбина низкого давления приводит во вращение компрессор низкого давления и вентилятор. Для уменьшения скорости вращения вентилятора относительно входной скорости турбины низкого давления используют понижающий редуктор. Турбина низкого давления имеет определенное число лопаток в каждом из множества рядов турбины. Рабочие лопатки турбины низкого давления вращаются с определенной скоростью. Число лопаток и скорость вращения выбирают таким образом, чтобы, по меньшей мере, для одного из рядов лопаток турбины низкого давления была справедлива следующая формула: (число лопаток × скорость вращения)/60≥5500. Угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

[0010] В другом варианте реализации согласно предыдущему варианту реализации число, полученное в результате вычисления по указанной формуле, больше или равно 6000.

[0011] В другом варианте реализации согласно предыдущему варианту реализации газотурбинный двигатель рассчитан на создание тяги, составляющей 15000 фунтов или больше.

[0012] В другом варианте реализации согласно непосредственно предыдущему варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0013] В другом варианте реализации согласно непосредственно предыдущему варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления.

[0014] В другом варианте реализации согласно характерному варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0015] В другом варианте реализации согласно характерному варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления.

[0016] В другом характерном варианте реализации способ конструирования газотурбинного двигателя включает в себя шаги установки понижающего редуктора между турбиной низкого давления и вентилятором, и выбора числа лопаток роторов турбины низкого давления в сочетании со угловой скоростью вращения турбины низкого давления таким образом, что следующая формула справедлива, по меньшей мере, для одного из рядов лопаток турбины низкого давления: (число лопаток × скорость)/60≥5500. Угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

[0017] В другом варианте реализации в результате вычисления по указанной формуле получают число, большее или равное 6000.

[0018] В другом варианте реализации согласно предыдущему варианту реализации газотурбинный двигатель рассчитывают на создание тяги 15000 фунтов или больше.

[0019] В другом варианте реализации согласно непосредственно предшествующему варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0020] В другом варианте реализации согласно непосредственно предшествующему варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления.

[0021] В другом варианте реализации согласно характерному варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0022] В другом варианте реализации согласно непосредственно предшествующему варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления.

[0023] В другом характерном варианте реализации турбинный модуль газотурбинного двигателя содержит турбину низкого давления с определенным числом турбинных лопаток в каждом из множества рядов турбины. Лопатки турбины низкого давления работают с определенной угловой скоростью вращения. Число лопаток и скорость вращения выбраны так, что следующая формула справедлива, по меньшей мере, для одного из рядов лопаток турбины низкого давления: (число лопаток × скорость)/60≥5500. Угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

[0024] В другом варианте реализации согласно предыдущему варианту реализации в результате вычисления по указанной формуле получают число, большее или равное 6000.

[0025] В другом варианте реализации согласно предыдущему варианту реализации газотурбинный двигатель рассчитан на создание тяги, составляющей 15000 фунтов или больше.

[0026] В другом варианте реализации согласно непосредственно предшествующему варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0027] В другом варианте реализации согласно непосредственно предшествующему варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления.

[0028] В другом варианте реализации согласно характерному варианту реализации формула справедлива для большинства рядов лопаток турбины низкого давления.

[0029] В другом варианте реализации согласно характерному варианту реализации формула справедлива для всех рядов лопаток турбины низкого давления. Эти и другие характеристики изобретения станут более понятными из приведенного далее описания и чертежей, краткое описание которых следует ниже.

Краткое описание чертежей

[0030] На фиг. 1 показан газотурбинный двигатель.

Осуществление изобретения

[0031] На фиг. 1 схематически показан газотурбинный двигатель 20. Газотурбинный двигатель 20 раскрыт здесь в виде двухкаскадного турбовентиляторного двигателя, который обычно содержит вентиляторную секцию 22, компрессорную секцию 24, секцию камеры сгорания 26 и турбинную секцию 28. Альтернативные двигатели могут содержать секцию усилителя тяги (не показана) или промежуточный контур наряду с другими системами или компонентами. Вентиляторная секция 22 нагнетает воздух в наружный контур, в то время как компрессорная секция 24 нагнетает воздух во внутренний контур для сжатия и подачи в секцию камеры сгорания 26 с последующим расширением в турбинной секции 28. В данном неограничительном варианте осуществления показан турбовентиляторный газотурбинный двигатель, однако, следует понимать, что описанные здесь концепции не ограничены применением в турбовентиляторных двигателях, поскольку эти положения могут быть использованы для других типов турбинных двигателей, включая трехконтурные конструкции.

[0032] Двигатель 20 обычно содержит низкоскоростной каскад 30 и высокоскоростной каскад 32, установленные с возможностью вращения вокруг центральной продольной оси A двигателя относительно неподвижной конструкции 36 двигателя при помощи нескольких подшипниковых систем 38. При этом следует понимать, что различные подшипниковые системы 38 могут быть альтернативно или дополнительно установлены на различных участках.

[0033] Низкоскоростной контур 30 обычно содержит внутренний вал 40, который соединяет вентилятор 42, компрессор 44 низкого давления и турбину 46 низкого давления. Внутренний вал 40 соединяется с вентилятором 42 при помощи редукторного устройства 48 для обеспечения приведения в действие вентилятора 42 с более низкой скоростью, чем скорость низкоскоростного каскада 30. Высокоскоростной каскад 32 содержит наружный вал 50, который соединяет компрессор 52 высокого давления и турбину 54 высокого давления. Камера 56 сгорания расположена между компрессором 52 высокого давления и турбиной 54 высокого давления. Между турбиной 54 высокого давления и турбиной 46 низкого давления обычно находится промежуточная силовая рама 57 неподвижной конструкции 36 двигателя. Промежуточная силовая рама 57 служит дополнительной опорой для подшипниковых систем 38 в турбинной секции 28. Внутренний вал 40 и наружный вал 50 являются концентричными и вращаются при помощи подшипниковых систем 38 вокруг центральной продольной оси A двигателя, коллинеарной их продольным осям.

[0034] Воздушный поток внутреннего контура сжимается компрессором 44 низкого давления, затем компрессором 52 высокого давления, смешивается с топливом и сжигается в камере 56 сгорания и далее расширяется в турбине 54 высокого давления и турбине 46 низкого давления. Промежуточная силовая рама 57 имеет аэродинамические поверхности 59, которые расположены на пути движения воздушного потока во внутреннем контуре. В ответ на указанное расширение турбины 46, 54 приводят во вращение соответствующий низкоскоростной каскад 30 и высокоскоростной каскад 32

[0035] Термины "низкий" и "высокий", применяемые к скорости вращения или к давлению контуров, компрессоров и турбин, являются, разумеется, относительными друг друга. Таким образом, низкоскоростной каскад работает с более низкой скоростью вращения, чем высокоскоростной каскад, а секции низкого давления работают при более низком давлении, чем секции высокого давления.

[0036] Двигатель 20 в одном примере представляет собой редукторный авиационный двигатель с высокой степенью двухконтурности. В другом примере степень двухконтурности двигателя 20 превышает приблизительно шесть (6), в частности превышает приблизительно десять (10), редукторное устройство 48 представляет собой эпициклическую зубчатую передачу, в частности, планетарную зубчатую передачу или другую зубчатую передачу, с понижающим передаточным числом, большим чем примерно 2.3, а турбина 46 низкого давления имеет отношение давлений больше чем приблизительно 5. В одном раскрытом варианте осуществления степень двухконтурности двигателя 20 больше чем приблизительно десять (10:1), диаметр вентилятора значительно превосходит диаметр компрессора 44 низкого давления, а турбина 46 низкого давления имеет отношение давлений больше чем приблизительно 5:1. Коэффициент давления турбины 46 низкого давления представляет собой отношение давления, измеренного перед входом турбины 46 низкого давления к давлению на выходе турбины 46 низкого давления перед реактивным соплом. Редукторное устройство 48 может представлять собой эпициклическую зубчатую передачу, в частности планетарную зубчатую передачу или другую зубчатую передачу с понижающим передаточным числом, большим чем примерно 2,5:1. Однако следует понимать, что вышеуказанные параметры приведены только в качестве примера для одного варианта осуществления двигателя с редукторным устройством и что настоящее изобретение может быть использовано для других газотурбинных двигателей, в том числе для безредукторных турбовентиляторных двигателей.

[0037] Значительная величина тяги обеспечивается потоком B наружного контура, благодаря высокой степени двухконтурности. Вентиляторная секция 22 двигателя 20 рассчитана на определенный режим полета - обычно крейсерский режим со скоростью примерно 0,8 Мах на высоте примерно 35000 футов. Этот режим полета при 0,8 Маха и 35,000 футах с оптимальным потреблением топлива двигателем, также известный как крейсерский полет с минимальным удельным расходом топлива по тяге (TSFC, от англ. Thrust Specific Fuel Consumption,) представляет собой промышленный стандартный параметр, определяющий количество сжигаемого топлива, выраженное в фунтах, разделенное на тягу, выраженную в фунтах-сила, развиваемую двигателем в этой минимальной точке. «Минимальное отношение давлений в вентиляторе» представляет собой отношение давлений только на лопатке вентилятора без системы выходных направляющих лопаток вентилятора (FEGV, от англ. Fan Exit Guide Vane). Минимальное отношение давлений в вентиляторе согласно одному раскрываемому в данном описании неограничительному варианту осуществления составляет менее чем приблизительно 1,45. «Минимальная приведенная окружная скорость лопатки вентилятора» представляет собой фактическую окружную скорость лопатки вентилятора в фут/сек, деленную на промышленную стандартную температурную поправку [(Tокружающей среды °R)/ (518,7°R)0,5]. «Нижняя приведенная окружная скорость лопатки вентилятора» согласно одному неограничительному варианту осуществления, раскрываемому в настоящем документе, составляет менее чем приблизительно 1150 фут/сек.

[0038] Применение понижающего редуктора между турбиной контура низкого давления и вентилятором позволяет увеличить скорость вращения компрессора низкого давления. В прошлом скорость вращения турбины низкого давления была несколько ограничена тем, что скорость вращения вентилятора не может быть чрезмерно большой. Максимальная скорость вращения вентилятора имеет место на наружной кромке его лопатки, при этом в более крупных двигателях диаметр вентилятора является гораздо большим, чем он может быть в менее мощных двигателях. Однако применение понижающего редуктора освободило конструктора от ограничения скорости вращения турбины низкого давления, вызванного необходимостью исключать чрезмерно высокие скорости вращения вентиляторов.

[0039] Как оказалось, можно выбрать определенное соотношение между числом вращающихся лопаток и угловой скоростью вращения турбины низкого давления, чтобы получить в результате шумовые частоты, которые в меньшей степени воспринимаются человеческим слухом.

[0040] Выведена следующая формула:

(число лопаток × угловая скорость вращения)/60≥5500.

[0041] Таким образом, число вращающихся лопаток в любой ступени турбины низкого давления, умноженное на угловую скорость вращения турбины низкого давления (в оборотах в минуту), разделенное на 60, должно быть больше или равно 5500. Точнее, это количество должно превышать 6000.

[0042] Рабочая скорость турбины низкого давления, используемая в указанной формуле, должна соответствовать режиму работы двигателя в каждой контрольной точке замера шумов, определяемой в соответствии с частью 36 Федеральных норм летной годности. Более конкретно, скорость вращения может быть принята в качестве контрольной точки замера шумов на участке захода на посадку согласно Части 36 Федеральных авиационных правил (Federal Airworthiness Regulations). В рамках настоящей заявки и ее формулы изобретения термин «скорость при заходе на посадку» соответствует этой контрольной точке сертификации.

[0043] Предусмотрено, что все ряды в турбине низкого давления соответствуют вышеуказанной формуле. Однако данное положение может также распространяться на турбины низкого давления, где большинство рядов лопаток в турбине низкого давления соответствуют вышеуказанной формуле, однако, некоторые ряды могу не соответствовать ей.

[0044] В результате этого при работе будет возникать шум, к которому человеческий слух менее чувствителен.

[0045] В вариантах осуществления изобретения результат расчета по указанной формуле может быть большим или равным 5500 и возрастать далее. Таким образом, путем тщательного выбора числа лопаток и управления рабочей скоростью турбины низкого давления (специалистам известно, каким образом управлять этой скоростью) можно обеспечить частоты шумов, создаваемых турбиной низкого давления, к которым человеческий слух менее чувствителен.

[0046] Данное изобретение в наибольшей степени может быть использовано для реактивных двигателей, рассчитанных на создание тяги, составляющей 15000 фунтов тяги или более. В этом диапазоне тяги реактивные двигатели, известные из уровня техники, обычно имеют частотный диапазон шумов около 4000 Гц. Поэтому, как указано выше, имеют место проблемы, связанные с шумом.

[0047] Двигатели с меньшей тягой (<15000 фунтов) могут работать в режимах, которые иногда превосходят величину 4000 и даже приближаются к 6000, однако это происходит не в сочетании с редукторным устройством и не для двигателей с приводом сравнительно высокой мощности, которые имеют большие вентиляторы и, следовательно, повышенные ограничения на скорость вращения турбины низкого давления.

[0048] В данном описании раскрыт один вариант осуществления настоящего изобретения, однако для специалистов очевидно, что в пределах объема этого изобретения в него могут быть внесены определенные видоизменения. По этой причине следует изучить прилагаемую формулу изобретения, чтобы определить истинный объем и содержание данного изобретения.

1. Газотурбинный двигатель, содержащий:

вентилятор, компрессорную секцию, содержащую компрессор с частью низкого давления и частью высокого давления, секцию камеры сгорания и турбину с частью низкого давления, а также понижающий редуктор, обеспечивающий уменьшение скорости указанного вентилятора относительно входной скорости указанного вентилятора;

указанная часть низкого давления указанной турбины имеет определенное число лопаток турбины в каждом из множества рядов указанной части турбины, при этом указанные лопатки турбины низкого давления предназначены для работы, по меньшей мере, некоторое время, с определенной угловой скоростью вращения, и при этом указанное количество лопаток и указанная угловая скорость вращения таковы, что следующая формула справедлива, по меньшей мере, для одного из рядов лопаток турбины низкого давления

(число лопаток × скорость) / 60≥5500; при этом

указанная угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

2. Газотурбинный двигатель по п. 1, в котором число, полученное в результате вычисления по формуле, больше или равно 6000.

3. Газотурбинный двигатель по п. 2, в котором указанный газотурбинный двигатель рассчитан на создание тяги, составляющей 15000 фунтов или больше.

4. Газотурбинный двигатель по п. 3, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.

5. Газотурбинный двигатель по п. 4, в котором формула справедлива для всех рядов лопаток турбины низкого давления.

6. Газотурбинный двигатель по п. 1, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.

7. Газотурбинный двигатель по п. 6, в котором формула справедлива для всех рядов лопаток турбины низкого давления.

8. Способ конструирования газотурбинного двигателя, содержащий шаги установки понижающего редуктора между частью турбины низкого давления и вентилятором, и выбора числа лопаток в каждом ряду роторов части турбины низкого давления в сочетании со угловой скоростью вращения турбины низкого давления таким образом, чтобы следующая формула была справедливой, по меньшей мере, для одного из рядов лопаток турбины низкого давления:

(число лопаток × скорость) / 60 ≥ 5500; при этом

указанная угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

9. Способ конструирования газотурбинного двигателя по п. 8, в котором в результате вычисления по формуле получают число, которое большее или равно 6000.

10. Способ конструирования газотурбинного двигателя по п. 9, в котором указанный газотурбинный двигатель рассчитывают на создание тяги, составляющей 15000 фунтов или больше.

11. Способ по п. 10, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.

12. Способ по п. 11, в котором формула справедлива для всех рядов лопаток турбины низкого давления.

13. Способ по п. 8, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.

14. Способ по п. 13, в котором формула справедлива для всех рядов лопаток турбины низкого давления.

15. Турбинный модуль, содержащий:

указанную часть низкого давления, имеющую определенное число лопаток турбины в каждом из множества рядов указанной части турбины, при этом указанные рабочие лопатки турбины низкого давления предназначены для работы, по меньшей мере, некоторое время, с определенной угловой скоростью вращения, при этом указанное число лопаток и указанная угловая скорость вращения таковы, что следующая формула справедлива, по меньшей мере, для одного из рядов лопаток узла низкого давления

(число лопаток × скорость) / 60 ≥ 5500; при этом

указанная угловая скорость вращения представляет собой скорость при заходе на посадку, выраженную в оборотах в минуту.

16. Турбинный модуль по п. 15, в котором число, полученное в результате вычисления по формуле, больше или равно 6000.

17. Турбинный модуль по п. 16, в котором указанный газотурбинный двигатель рассчитан на создание тяги, составляющей 15000 фунтов или больше.

18. Турбинный модуль по п. 17, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.

19. Турбинный модуль по п. 18, в котором формула справедлива для всех рядов лопаток турбины низкого давления.

20. Турбинный модуль по п. 15, в котором формула справедлива для большинства рядов лопаток турбины низкого давления.



 

Похожие патенты:

Зубчатая система привода вентилятора газотурбинного двигателя, обеспечивающая понижение частоты вращения между турбиной привода вентилятора и вентилятором, содержит подвеску, обеспечивающую гибкую опору частей зубчатой системы, и смазочную систему, выполненную с возможностью подачи смазочного материала к зубчатой системе и отвода тепловой энергии, выделяющейся в зубчатой системе.

Предложена присоединяющая лопатку конструкция в сочетании с лопаткой реактивного двигателя, предназначенная для присоединения лопатки к реактивному двигателю, причем лопатка выполнена из композиционного материала.

Узел авиационного двигателя для забора воздуха и выпуска центральной струи и струи обводного контура содержит цилиндрический центральный обтекатель, цилиндрическую гондолу, множество распорных элементов, основной и вспомогательный пилоны и множество направляющих лопаток на стороне выхода вентилятора.

Двухконтурный турбореактивный двигатель содержит рабочее колесо вентилятора, имеющее лопатки и охваченное кольцевым картером. Картер содержит средства всасывания воздуха в кольцевом зазоре, образованном между картером и радиально наружными концами лопаток рабочего колеса вентилятора.

Турбореактивный двигатель содержит промежуточный картер с радиальными рукавами и приводным валом коробки зубчатых передач вспомогательных механизмов. Приводной вал установлен в радиальном рукаве, причем рукав включает промежуточный подшипник для опоры приводного вала.

Изобретение относится к уплотнительному устройству для прохода соединительной тяги системы управления шагом лопастей вентилятора турбовинтового двигателя сквозь перегородку.

Способ создания движущей силы для перемещения летательного аппарата включает ввод воздуха и создание азимутально и аксиально движущегося потока, его сжатие компрессором, нагрев потока, вывод струи со скоростью, большей азимутальной скорости лопастей турбины, ввод дополнительного объема воздуха.

Крепежная конструкция для прикрепления направляющей лопасти к раме или кожуху вентилятора двигателя воздушного судна. Направляющая лопасть образована из композитного материала.

Турбовинтовая силовая установка разнесенной винтовой схемы с переключающимися реактивными и винтовыми типами тяг воздушного летательного аппарата. Пересечение совмещенной зоной воздушных винтов с взаимным вхождением лопастей в межлопастное пространство друг друга реактивной струи с одновременным нахождением остальных лопастей винтов в окружающем воздушном пространстве.

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых самолетов. Турбореактивный двигатель включает турбину низкого давления и регулируемый лепестковый смеситель, содержащий коническую обечайку, на ее выходе.

Способ повышения тяги двухконтурного турбореактивного двигателя, содержащего вентилятор, компрессор, камеру сгорания, турбину высокого давления, турбину низкого давления, сопло внутреннего контура и сопло наружного контура, заключается в том, что в канале наружного контура перед входом в сопло устанавливаются направляющие лопатки, позволяющие получить за срезом сопла внутреннего контура зону пониженного давления, что обеспечивает увеличение скорости истечения из сопла внутреннего контура и возрастание расхода воздуха через двигатель. Изобретение направлено на повышение тяги при сохранении веса двигателя. 2 ил.

Газотурбинный двигатель содержит чрезвычайно высокоскоростную турбину низкого давления, при этом отношение параметра, определяемого произведением площади выходного сечения турбины низкого давления на квадрат скорости вращения турбины низкого давления, к такому же параметру турбины высокого давления составляет от приблизительно 0,5 до приблизительно 1,5. Турбина высокого давления установлена на турбине низкого давления с промежуточной опорой. Достигается повышение коэффициента полезного действия газотурбинного двигателя, особенно при действии эффекта сжимаемости воздуха. 3 н. и 17 з.п. ф-лы, 3 ил.

Газотурбинный двигатель содержит очень высокоскоростную турбину привода вентилятора, при этом отношение параметра, определяемого произведением площади выходного сечения турбины низкого давления на квадрат скорости вращения турбины низкого давления, к такому же параметру турбины высокого давления составляет от 0,5 до 1,5. Турбина высокого давления установлена с помощью подшипников, расположенных на внешней периферии вала, который приводится во вращение турбиной высокого давления. Достигаются увеличенный коэффициент полезного действия и уменьшенные размеры турбинной секции. 3 н. и 17 з.п. ф-лы, 3 ил.

Газотурбинный двигатель содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Для приведения в движение вентиляторной секции использован редуктор, например, представляющий собой эпициклическую зубчатую передачу, так, чтобы обеспечить возможность вращения вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, и повысить суммарный тяговый КПД двигателя. В двигателях такой конструкции вал, приводимый в движение одной из турбинных секций, приводит в действие эпициклическую зубчатую передачу, которая вращает вентилятор со скоростью, отличной от скорости вращения турбинной секции, в результате чего скорости вращения как турбинной секции, так и вентиляторной секции могут быть приближены к оптимальным, что обеспечивает повышение рабочих характеристик и производительности за счет использования требуемых сочетаний раскрытых конструктивных особенностей различных компонентов описанного газотурбинного двигателя. 19 з.п. ф-лы, 13 ил.

Газотурбинный двигатель, как правило, содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Для приведения в движение вентиляторной секции может быть использован редуктор, например, представляющий собой эпициклическую зубчатую передачу, так, чтобы обеспечить возможность вращения вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, и повысить суммарный тяговый КПД двигателя. В двигателях такой конструкции вал, приводимый в движение одной из турбинных секций, приводит в действие эпициклическую зубчатую передачу, которая вращает вентилятор со скоростью, отличной от скорости вращения турбинной секции, в результате чего скорости вращения как турбинной секции, так и вентиляторной секции могут быть приближены к оптимальным, что обеспечивает повышение рабочих характеристик и производительности за счет использования требуемых сочетаний раскрытых конструктивных особенностей различных компонентов описанного газотурбинного двигателя. 18 з.п. ф-лы, 13 ил., 1 табл.

Газотурбинный двигатель содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Для приведения в движение вентиляторной секции может быть использован редуктор, например, представляющий собой эпициклическую зубчатую передачу, так, чтобы обеспечить возможность вращения вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции. Турбинная секция сообщается по текучей среде с камерой сгорания и содержит турбину привода вентилятора и вторую турбину, причем турбина привода вентилятора содержит множество ступеней турбины. Вентилятор имеет множество лопаток, вращаемых вокруг оси, причем отношение числа лопаток вентилятора к числу ступеней турбины составляет от 2,5 до 8,5. Турбина привода вентилятора содержит первый задний ротор, прикрепленный к первому валу, а вторая турбина содержит второй задний ротор, прикрепленный ко второму валу. Аксиально позади первого соединения между первым задним ротором и первым валом расположен первый подшипниковый узел, а аксиально перед вторым соединением между вторым задним ротором и вторым валом расположен второй подшипниковый узел. Вторая турбина имеет по меньшей мере две ступени и способна работать при первом давлении, а турбина привода вентилятора имеет более двух ступеней и способна работать при втором давлении, которое меньше, чем первое давление. Обеспечивается повышение рабочих характеристик и производительности за счет использования требуемых сочетаний раскрытых конструктивных особенностей различных компонентов описанного газотурбинного двигателя. 18 з.п. ф-лы, 12 ил.

Газотурбинный двигатель содержит вентилятор, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, турбинную секцию, сообщающуюся по текучей среде с камерой сгорания, а также систему изменения скорости. Турбинная секция содержит турбину привода вентилятора и вторую турбину, при этом турбина привода вентилятора содержит множество ступеней турбины. Вентилятор содержит множество лопаток, выполненных с возможностью вращения вокруг оси, при этом соотношение между числом лопаток вентилятора и числом ступеней турбины привода вентилятора составляет от 2,5 до 8,5. Система изменения скорости приводится в действие турбиной привода вентилятора для вращения вентилятора вокруг оси. Турбина привода вентилятора содержит первый задний ротор, присоединенный к первому валу, а вторая турбина содержит второй задний ротор, присоединенный ко второму валу. Между первым валом и вторым валом образован кольцевой зазор. Первый подшипниковый узел расположен аксиально позади первого соединения между первым задним ротором и первым валом, а второй подшипниковый узел расположен в кольцевом зазоре, образованном между первым валом и вторым валом. Изобретение позволяет исключить потребность в несущих конструкциях, соединенных с неподвижной конструкцией через промежуточную силовую раму, уменьшить длину валов, обеспечить поддержку внешнего вала соосно с втулкой соединения ротора турбины высокого давления и внешнего вала, обеспечить более компактную турбинную секцию, а также снизить ее вес и потребление топлива. 19 з.п. ф-лы, 13 ил.

Газотурбинный двигатель содержит вентиляторную секцию и редуктор. Вентиляторная секция содержит вентилятор, выполненный с возможностью вращения вокруг оси. Редуктор взаимодействует с вентилятором, причем указанный редуктор содержит планетарную зубчатую передачу привода вентилятора с передаточным отношением планетарной передачи по меньшей мере 2,5 и меньше или равно 5,0. Степень двухконтурности двигателя лежит в интервале от 11,0 до 22,0. Планетарная передача содержит солнечную шестерню, множество сателлитных шестерней, коронную шестерню и водило. Каждая из множества сателлитных шестерней содержит по меньшей мере один подшипник. Коронная шестерня зафиксирована от вращения. Турбина низкого давления механически прикреплена к солнечной шестерне. Вентиляторная секция механически прикреплена к водилу. Скорость конца лопасти вентилятора составляет менее 1400 футов в секунду. Достигаются пути повышение термического, тягового коэффициентов полезного действия и коэффициента полезного действия передачи за счёт снижения нагрузки на её подшипники и шестерни. 2 н. и 5 з.п. ф-лы, 3 ил.

Сужающееся-расширяющееся сопло турбомашины содержит кольцевой центральный конструктивный элемент и кольцевой кожух, коаксиально размещенный вокруг центрального конструктивного элемента таким образом, чтобы ограничивать вместе с ним кольцевой канал потока газов двигателя. Между критическим сечением сопла и сечением истечения сопла наружный профиль центрального конструктивного элемента и внутренний профиль кожуха сформированы, в продольном сечении, посредством кривых линий, радиусы кривизны которых имеют значение производной второго порядка функции y(x), определяющей форму указанных кривых линий, относительно осевого положения вдоль соответствующей кривой линии. Соответствующие радиусы кривизны кривых линий идентичны по абсолютной величине. Другие изобретения группы относятся к двухконтурному турбореактивному двигателю и турбовинтовому двигателю, содержащему указанное выше сопло. Группа изобретений позволяет повысить аэродинамические характеристики сопла. 3 н. и 2 з.п. ф-лы, 3 ил.

Газотурбинный двигатель содержит вентилятор, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, турбину привода вентилятора, сообщающуюся с камерой сгорания, редукторную систему, гибкую опору и смазочную систему. Редукторная система выполнена с возможностью обеспечивать понижение скорости между турбиной привода вентилятора и вентилятором и передавать вентилятору входную мощность от турбины привода вентилятора с КПД, который превышает 98% и меньше, чем 100%. Гибкая опора обеспечивает поддержку частей редукторной системы, причем опора отходит от неподвижной конструкции двигателя с возможностью компенсации, по меньшей мере, радиального перемещения между редукторной системой и неподвижной конструкцией. Смазочная система выполнена с возможностью подачи смазки в редукторную систему и отвода тепловой энергии из редукторной системы. Турбина привода вентилятора имеет первую площадь выходного сечения и выполнена с возможностью вращения с первой скоростью, а двигатель дополнительно содержит вторую турбину, имеющую вторую площадь выходного сечения и выполненную с возможностью вращения со скоростью, превышающей первую скорость вращения. Первый характеризующий параметр определен как произведение квадрата первой скорости и первой площади, а второй характеризующий параметр определен как произведение квадрата второй скорости и второй площади, причем отношение первого характеризующего параметра ко второму характеризующему параметру составляет от 0,5 до 1,5. Изобретение позволяет повысить КПД газотурбинного двигателя. 10 з.п. ф-лы, 1 табл., 5 ил.
Наверх