Сопло ракетного двигателя с механизмом раздвижки

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом. В сложенном положении сопла образующая лепестка, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость. Элементы кинематической связи лепестков с раструбом содержат пантографы, связывающие соседние лепестки друг с другом. Каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками. Каждый лепесток связан с раструбом направляющим элементом, расположенным в плоскости симметрии лепестка, при этом сопло содержит привод раздвижки. Лепестки размещены в нескольких концентрически расположенных ярусах, содержащих одинаковое количество лепестков. Каждый направляющий элемент одновременно связывает посредством шарниров лепестки нижнего и каждого вышестоящего ярусов, а также раструб. Изобретение позволяет уменьшить габариты сопла в сложенном положении. 2 з.п. ф-лы, 11 ил.

 

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом.

Известно, что увеличение удельного импульса тяги за счет высокой степени расширения сопла при ограниченных габаритах ракетного двигателя реализуется применением сопла с раздвижными насадками (телескопическими), снабженными механизмом их раздвижки [Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива: Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 328 с.: ил., страница 142, рис. 6.14]. Данная конструкция применяется при наличии свободного объема между срезом раструба сопла и днищем ракетного двигателя. В указанном свободном объеме размещены раздвижные телескопические насадки и механизм их раздвижки. Рассматриваемая конструкция не применима в случае отсутствия (дефицита) свободного объема перед срезом раструба сопла. В зависимости от конфигурации имеющегося свободного объема в некоторых случаях может быть использовано лепестковое сопло и механизм его раздвижки [Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива: Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 328 с.: ил., страница 145, рис. 6.20]. Сопло ракетного двигателя содержит раструб и складной насадок, образованный поворотными лепестками, кинематически связанными с раструбом механизмом раздвижки, обеспечивающим перевод лепестков из сложенного положения в рабочее посредством их поворота.

Недостатками рассматриваемой конструкции являются:

- большие габариты сопла в сложенном положении, вследствие чего требуется наличие свободного объема перед срезом раструба сопла при складывании лепестков поворотом вперед (почти на 180°) или требуется свободный объем в радиальном направлении (увеличение миделя ракеты) при складывании лепестков поворотом в вертикальное (радиальное) положение (на 90°). Складывание поворотных лепестков в несколько звеньев (или ярусов) позволило бы уменьшить габариты сопла в сложенном положении, но при этом существенно усложняется конструкция, которая уже в однозвенном исполнении является достаточно сложной. Сокращение габаритов многозвенного лепесткового сопла за счет существенного усложнения конструкции требует обоснования целесообразности реализации такой схемы;

- сложность механизма раздвижки, содержащего систему синхронизации поворота лепестков. Сложность механизма раздвижки обуславливает его низкую надежность.

Наиболее близким по технической сущности и достигаемому положительному эффекту к предлагаемому изобретению является сопло ракетного двигателя с механизмом раздвижки [Патент РФ №2542650]. Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом. Образующая лепестка в сложенном положении, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость. Элементы кинематической связи лепестков с раструбом содержат пантографы, связывающие соседние лепестки друг с другом, а каждый лепесток связан с раструбом направляющим элементом. Достоинством представленного технического решения является упрощение конструкции сопла со складным насадком, примененным для увеличения удельного импульса тяги за счет увеличения степени расширения сопла при ограниченных габаритах ракетного двигателя. Недостатком рассматриваемой конструкции является недостаточная реализация уменьшения габаритов сопла в сложенном положении.

Технической задачей настоящего изобретения является уменьшение габаритов сопла в сложенном положении.

Сущность изобретения заключается в том, что в сопле ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержащем раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом, причем образующая лепестка в сложенном положении, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость, при этом элементы кинематической связи лепестков с раструбом содержат пантографы, связывающие соседние лепестки друг с другом, а каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками, причем каждый лепесток связан с раструбом направляющим элементом, расположенным в плоскости симметрии лепестка, при этом сопло содержит привод раздвижки, лепестки размещены в нескольких концентрически расположенных ярусах, содержащих одинаковое количество лепестков, причем каждый направляющий элемент одновременно связывает посредством шарниров лепестки нижнего и каждого вышестоящего ярусов, а также раструб. Привод раздвижки может быть размещен в одном из ярусов. Угол между направляющим элементом в сложенном положении и продольной осью сопла может составлять значение менее 90°.

Технический результат (максимальное уменьшение габаритов сопла в сложенном положении) достигается обеспечением возможности применения многоярусного расположения лепестков за счет схемы направляющих элементов. В указанной схеме каждый направляющий элемент выполнен поворотным и одновременно связывает посредством шарниров лепестки нижнего и каждого вышестоящего ярусов между собой, а также с раструбом. Предлагаемая схема направляющих элементов обеспечивает в рассматриваемой конструкции плоскопараллельный характер перемещения лепестков при их раздвижке (обеспечивает условие параллельности образующей лепестка в сложенном положении, проведенной через плоскость его симметрии, образующей раструба, проведенной через эту же плоскость). Предлагаемая схема для многоярусного сопла позволяет сохранить основной принцип одноярусного прототипа: «Конфигурация сложенного положения лепестка, при которой любая его грань параллельна этой же грани лепестка в его рабочем положении, обеспечивает как кинематическую простоту складывания сопла, так и ее компактность». Таким образом, для изначально сложной лепестковой многоярусной конструкции упрощение кинематики (и конструкции в целом) доведено до уровня, обеспечивающего реальные аргументы в пользу целесообразности реализации предлагаемой схемы. Многоярусное расположение параллельных друг другу лепестков позволяет максимально приблизить днище предыдущей ступени к днищу ракетного двигателя с рассматриваемым соплом (т.е. максимально сократить осевой габарит сложенного сопла). В связи с кинематической взаимосвязанностью ярусов достаточно привод раздвижки (совмещенный с конструкцией пантографов, т.е. усложняющий пантографы) разместить только в одном из ярусов. При этом конструкция пантографов других ярусов выполняется упрощенной, упрощая конструкцию сопла в целом. Угол между направляющим элементом в сложенном положении и продольной осью сопла составляет значение менее 90°. Первоначальный наклон направляющего элемента создает осевую проекцию движущей силы, приложенной к направляющему элементу, и обеспечивает (без применения дополнительных устройств привода раздвижки) однозначный поворот этого направляющего элемента в сторону уменьшения угла наклона направляющего элемента, т.е. в сторону среза сопла при центростремительном перемещении лепестков в процессе раздвижки. Соответственно, по оси раздвижка происходит в требуемом направлении - в сторону среза сопла.

Данное техническое решение не известно из патентной и технической литературы.

Изобретение поясняется следующим графическим материалом:

на фиг. 1 показан вид с боку сопла в сложенном положении;

на фиг. 2 показана выноска А фиг. 1 в виде продольного разреза сопла в сложенном положении;

на фиг. 3 показан вид сзади сопла (на его срез) в сложенном положении;

на фиг. 4 показано сопло в сложенном положении в плоскости расположения направляющего элемента (нижняя половина рисунка без вырезов, верхняя половина - продольный разрез сопла Б-Б фиг. 3);

на фиг. 5 показано сопло в сложенном положении в изометрии (вид «спереди-сбоку»);

на фиг. 6 показано сопло в сложенном положении в изометрии (вид «сзади-сбоку»);

на фиг. 7 показан вид с боку сопла в рабочем положении;

на фиг. 8 показана выноска В фиг. 7 в виде продольного разреза сопла в рабочем положении;

на фиг. 9 показано сопло в рабочем положении в плоскости расположения направляющего элемента (нижняя половина рисунка без вырезов, верхняя половина - продольный разрез сопла Б-Б фиг. 3 (с учетом рабочего положения));

на фиг. 10 показано сопло в рабочем положении в изометрии (вид «спереди-сбоку»);

на фиг. 11 показано сопло в рабочем положении в изометрии (вид «сзади-сбоку»).

Сопло ракетного двигателя с механизмом раздвижки содержит раструб 1 и складной насадок, образованный лепестками 2 (фиг. 1). Лепестки 2 кинематически связаны с раструбом 1 механизмом раздвижки, обеспечивающим перевод лепестков 2 из сложенного положения L в рабочее положение N (фиг. 2). Образующая Y лепестка 2 (фиг. 4) в сложенном положении L, проведенная через плоскость Z его симметрии (фиг. 3), параллельна образующей F раструба 1 (фиг. 4), проведенной через эту же плоскость Z (фиг. 3). На фиг. 2 рабочее положение N лепестков 2 показано штриховой линией, пересекающей переднее днище 3 предыдущей ступени, показанное тонкой линией. Лепестки 2 в сложенном положение L не пересекают переднее днище 3 предыдущей ступени. Сложенное положение L лепестков 2 образовано плоско-параллельным перемещением в радиально-осевом направлении каждого лепестка 2 относительно его рабочего положения N. Лепестки 2 содержат продольные кромки 4. Продольные кромки 4 в любом положении лепестков 2 параллельны друг другу. Лепестки 2 размещены в нескольких концентрически расположенных ярусах (5 и 6), содержащих одинаковое количество лепестков 2. Ярус 5, расположенный на меньшем радиусе, является нижним, ярус 6 - вышестоящим (для двухъярусного варианта сопла, показанного на фиг. 1-11, - верхним). Многоярусное расположение лепестков 2 позволяет максимально приблизить переднее днище 3 предыдущей ступени к заднему днищу ракетного двигателя с рассматриваемым соплом (максимально сократить зазор W между указанными днищами (фиг. 2)). Элементы кинематической связи лепестков 2 с раструбом 1 содержат пантографы (7 и 8), связывающие соседние лепестки 2 друг с другом. Пантографы 7 связывают лепестки 2 нижнего яруса 5. Пантографы 8 связывают лепестки 2 вышестоящего (верхнего) яруса 6 друг с другом. Каждый пантограф 7 и 8 содержит продольную балку 9, связанную с каждым из двух соседних лепестков 2 двумя шарнирно закрепленными планками 10. Указанная конструктивная схема пантографов 7 и 8 обеспечивает то, что в любом своем положении лепестки 2 располагаются параллельно друг другу, т.е. определяет плоско-параллельный характер возможного перемещения лепестков 2, вызывающего изменение их радиального положения. Осевое положение каждого лепестка 2 при изменении его радиального положения регламентируется направляющими элементами, связывающими каждый лепесток 2 с раструбом 1. Направляющие элементы расположены в плоскости симметрии Z лепестков 2. Каждый направляющий элемент выполнен в виде пластины 11, установленной с возможностью поворота в шарнирах 12 и 13 (фиг. 4). При этом шарнир 13 установлен на раструбе 1. Каждый направляющий элемент одновременно связывает посредством шарниров 12 лепестки 2 нижнего 5 и каждого вышестоящего 6 (или верхнего 6) ярусов между собой, а также связывает посредством шарнира 13 складной насадок, образованный лепестками 2, с раструбом 1. Угол α между направляющим элементом (отрезком, соединяющим центры шарниров 12 и 13) в сложенном положении L и продольной осью сопла составляет значение менее 90°, обеспечивая первоначальный наклон направляющего элемента в требуемую сторону его поворота при раздвижке (фиг. 4). При указанном первоначальном наклоне центростремительное перемещение шарнира 12 вызывает однозначный поворот пластины 11 в сторону уменьшения угла α. Сопло содержит привод раздвижки. Привод раздвижки объединен с конструкцией пантографов. Для упрощения конструкции сопла привод раздвижки размещен только в одном из ярусов. Для варианта, показанного на фиг. 1-11, привод раздвижки размещен в вышестоящем (верхнем) ярусе 6. Соответственно, привод раздвижки объединен с конструкцией пантографов 8. Пантограф 8 содержит продольный стакан 14 (совмещенный с продольной балкой 9) и шток 15, установленный с возможностью продольного перемещения в стакане 14. Шток 15 образует со стаканом 14 подпоршневую полость 16, с которой сообщен пиропатрон 17. На штоке 15 шарнирно установлены поворотные тяги 18, шарнирно связанные с парой планок 10, расположенных со стороны штока 15. В соседние лепестки 2 верхнего яруса 6 установлена с возможностью перемещения вдоль своей оси штанга 19, расположенная перпендикулярно продольной оси сопла. Штанга 19 обеспечивает центрирование соседних лепестков 2 верхнего яруса 6 друг относительно друга в любом положении лепестков 2.

Устройство работает следующим образом. В сложенном положении L лепестков 2 кольцо, образованное лепестками 2 и пантографами 7 нижнего яруса 5, и кольцо, образованное лепестками 2 и пантографами 8 вышестоящего (верхнего) яруса 6 с зафиксированным радиальным положением лепестков 2 посредством пантографов 8, удерживаются и центрируются относительно раструба 1 направляющими элементами, выполненными в виде пластин 11. При условии фиксации радиального положения лепестков 2 одного из ярусов (в рассматриваемом варианте - верхнего яруса 6, зафиксированного посредством пантографов 8) остальные ярусы (нижний ярус 5) в данной кинематической схеме также оказываются в зафиксированном положении. Угловое положение направляющих элементов, выполненных в виде пластин 11, определяется радиальным положением верхнего яруса 6 (а оно зафиксировано). Фиксированное таким образом угловое положение пластин 11 однозначно определяет радиальное положение нижнего яруса 5. В сложенном положении L лепестки 2 располагаются между задним днищем ракетного двигателя с рассматриваемым соплом и передним днищем 3 предыдущей ступени (причем, раструб 1 практически упирается в переднее днище 3 (фиг. 2)). После отделения переднего днища 3 предыдущей ступени (исчезновения габаритных ограничений) перевод лепестков 2 в рабочее положение N производится подачей электрического импульса на пиропатроны 17. В подпоршневой полости 16 возникает давление, воздействующее на шток 15 и стакан 14, расталкивая их. Перемещение штока 15 относительно стакана 14 сопровождается поворотом поворотных тяг 18, а также шарнирно с ними связанной пары планок 10, расположенных со стороны штока 15. Соответственно, поворот указанной пары планок 10 вызывает синхронный поворот остальных планок 10 привода раздвижки, объединенного с конструкцией пантографов 8 и размещенного в верхнем ярусе 6. При повороте планок 10 пантографов 8 происходит взаимное сближение лепестков 2 верхнего яруса 6. Взаимное сближение лепестков 2 приводит к сжатию (уменьшению радиуса) кольца, образованного лепестками 2 и пантографами 8, т.е. к центростремительному радиальному перемещению лепестков 2 верхнего яруса 6. В центростремительном радиальном перемещении участвуют шарниры 12. В процессе центростремительного радиального перемещения лепестков 2 и шарниров 12 пластины 11 направляющих элементов поворачиваются относительно шарниров 13, установленных на раструбе 1. При значении угла α менее 90°, обеспечивающем первоначальный наклон направляющего элемента, поворот направляющего элемента приводит к однозначному дальнейшему уменьшению угла α, т.е. к осевому перемещению лепестков 2 в сторону среза раструба 1. Таким образом, регламентируется осевое положение каждого лепестка 2 верхнего яруса 6 при изменении его радиального положения в процессе центростремительного радиального перемещения лепестков 2. В процессе описываемого поворота пластин 11 направляющих элементов происходит принудительное сжатие (уменьшение радиуса) кольца, образованного лепестками 2 и пантографами 7 нижнего яруса 5. В результате радиально-осевого перемещения лепестков 2 (как нижнего яруса 5, так и верхнего яруса 6) их продольные кромки 4 смыкаются между собой, а в продольном направлении лепестки 2 нижнего яруса 5 примыкают к раструбу 1, лепестки 2 верхнего яруса 6 примыкают к лепесткам 2 нижнего яруса 5. Таким образом, лепестки 2 всех ярусов (5 и 6) занимают рабочее положение N. Лепестки 2 фиксируются друг относительно друга известными механизмами, например цанговыми защелками. Далее производится запуск ракетного двигателя, и сопло работает как единое целое.

Технико-экономическая эффективность предлагаемого изобретения по сравнению с прототипом, в качестве которого выбрано сопло ракетного двигателя с механизмом раздвижки сопла ракетного двигателя [Патент РФ №2542650], заключается в уменьшении габаритов сопла в сложенном положении.

1. Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержащее раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом, причем образующая лепестка в сложенном положении, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость, при этом элементы кинематической связи лепестков с раструбом содержат пантографы, связывающие соседние лепестки друг с другом, а каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками, причем каждый лепесток связан с раструбом направляющим элементом, расположенным в плоскости симметрии лепестка, при этом сопло содержит привод раздвижки, отличающееся тем, что лепестки размещены в нескольких концентрически расположенных ярусах, содержащих одинаковое количество лепестков, причем каждый направляющий элемент одновременно связывает посредством шарниров лепестки нижнего и каждого вышестоящего ярусов, а также раструб.

2. Сопло ракетного двигателя с механизмом раздвижки по п. 1, отличающееся тем, что привод раздвижки размещен в одном из ярусов.

3. Сопло ракетного двигателя с механизмом раздвижки по п. 1, отличающееся тем, что угол между направляющим элементом в сложенном положении и продольной осью сопла составляет значение менее 90°.



 

Похожие патенты:

Изобретение относится к ракетной технике, в частности к устройству жидкостного ракетного двигателя с выдвижным многосекционным соплом. Жидкостный ракетный двигатель с выдвижным соплом, содержащий камеру с соплом из двух частей, одна из которых, смонтированная неподвижно с камерой сгорания, снабжена механизмом выдвижения в виде привода, исполнительного механизма и узлов направления и фиксации в конечном положении, а вторая - выполнена с возможностью перемещения вдоль оси сопла из двух частей, связанных телескопически друг с другом с возможностью взаимного кинематического взаимодействия и с узлами направления и фиксации, по цилиндрическому контуру на периферии неподвижной обечайки сопла выполнены профильные многозаходные винтовые направляющие, по одинаковым по окружности равноотстоящим друг от друга и продольной оси двигателя винтовым траекториям, а на корпусе выдвижной максимального диаметра части сопла с возможностью вращения и с осевой фиксацией установлена кольцевая обечайка, снабженная двумя группами направленных к продольной оси сопла и в другую от нее сторону цапф со сферическими подшипниками, одной - взаимодействующей своими подшипниками с внутренними профилями винтовых направляющих, и второй - группой цапф, снабженной сферическими подшипниками, через шатуны с группой цапф, размещенной с внешней части сопла максимального диаметра.

Изобретение относится к ракетной технике, в которой создание жидкостных ракетных двигателей с донной тепловой защитой, предназначенной для уменьшения теплового и газодинамического воздействия продуктов сгорания работающих двигателей, является актуальной задачей.

Изобретение относится к ракетно-космической технике. Компоновка маршевой многокамерной двигательной установки двухступенчатой ракеты-носителя с составным сопловым блоком, оснащенной ракетными блоками первой и второй ступеней, соединенными и работающими по параллельной схеме, содержащая охлаждаемые камеры жидкостных ракетных двигателей (ЖРД) первой ступени, расположенные вокруг укороченного центрального тела общего для этих камер штыревого сопла, и камеры сгорания второй ступени, расположенные во внутренней полости этого укороченного центрального тела около их общего круглого тарельчатого сопла, соединенные разъемными узлами силовой связи с разделяемыми ракетными блоками ступеней.

Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом.

Изобретение относится к ракетной технике. Раструб сопла ракетного двигателя с тепловой изоляцией выполнен из композиционного материала, который представляет собой армированную углеродными волокнами керамическую матрицу.

Изобретение относится к ракетной технике, а более конкретно к устройству жидкостного ракетного двигателя с выдвижным соплом. В жидкостном ракетном двигателе исполнительный механизм выполнен в виде двух соосных, с неподвижным соплом и между собой одной неподвижной и другой, выполненной с возможностью вращения относительно неподвижной, обечаек, с расположенными между обечайками подшипниками и узлом ограничения взаимного осевого перемещения вдоль продольной оси сопла, а на второй обечайке, связанной кинематически с приводом вращательного перемещения через кинематический узел, и на наружной части смонтированной с возможностью перемещения части сопла равномерно по окружности расположены цапфы с установленными на их концах сферическими подшипниками, соединенными шатунами.

Развертываемое сопло для ракетного двигателя содержит неподвижную расширяющуюся секцию и подвижную расширяющуюся секцию, которая коаксиальна неподвижной расширяющейся секции и выполнена с возможностью перемещения вдоль неподвижной расширяющейся секции из втянутого положения в развернутое положение.

Изобретение относится к области машиностроения и может быть использовано при изготовлении заглушек для сопел ракетных двигателей на твердом топливе. При изготовлении сферической заглушки выкраивают круговые заготовки из пропитанной связующим стеклоткани, выкладывают из заготовок многослойный пакет на соответствующую конфигурации заглушки матрицу пресс-формы и осуществляют горячее прессование.

Изобретение относится к ракетной технике и может быть использовано при разработке заглушек сопел малогабаритных ракетных двигателей, где необходимо реализовать высокий уровень давления срабатывания заглушки.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб, первый насадок, наружный телескопический насадок, механизмы раздвижки, обеспечивающие перевод сопла из сложенного положения в рабочее, а также приводы раздвижки. Первый насадок образован лепестками с элементами кинематической связи лепестков с раструбом, обеспечивающими сокращение зазора между наружным телескопическим насадком и лепестками в сложенном положении. Механизмы и приводы раздвижки выполнены каждый для своего насадка, при этом механизм и привод раздвижки первого насадка являются автономными. Образующая лепестка в сложенном положения, проведенная через плоскость его симметрии, параллельна образующей раструба, проведенной через эту же плоскость. Элементы кинематической связи лепестков с раструбом содержат пантографы, связывающие соседние лепестки друг с другом. Каждый пантограф содержит продольную балку, связанную с каждым из двух соседних лепестков двумя шарнирно закрепленными планками. Каждый лепесток связан с раструбом направляющим элементом, расположенным в плоскости симметрии лепестка. Привод раздвижки первого насадка выполнен в продольных балках и кинематически связан с планками. Изобретение позволяет повысить плотность компоновки сопла в ракете при ограниченном в сложенном положении диаметре сопла и фиксированной степени расширения. 3 з.п. ф-лы, 12 ил.

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку. В критическом сечении сопла установлена прорывная мембрана. Заглушка состоит из основания, крышки и закрепленного на основании полого цилиндрического стакана с перфорированным дном со стороны мембраны, установленной в критическом сечении сопла. В основании заглушки и дне стакана выполнены соосные отверстия, в которых установлен шток с возможностью его продольного перемещения. Шток имеет заостренный наконечник со стороны мембраны, коническое утолщение со стороны основания заглушки, сопряженное с конической выемкой в основании, и срезаемый фланец, зажатый между основанием и крышкой заглушки. На штоке внутри стакана закреплена консоль, а между дном стакана и консолью установлена цилиндрическая пружина, охватывающая шток. Пиротехнический инициатор состоит из навески основного воспламенителя, размещенной между дном стакана и мембраной, и не менее двух каплюлей-воспламенителей, установленных на основании заглушки и сопряженных с ударниками, закрепленными на консоли. Крышка сопловой заглушки расположена в выходном сечении сопла и закреплена при помощи завальцовки с его внешней стороны, а в центральной части крышки выполнено отверстие, диаметр которого равен диаметру конического утолщения штока. Величина свободного объема камеры сгорания определяется алгебраическим выражением, защищаемым настоящим изобретением. Изобретение позволяет обеспечить надежное автономное воспламенение заряда твердого топлива, не зависящее от воздействия пороховых газов метательного заряда и сброса давления при вылете сопловой заглушки. 4 ил., 1 табл.

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов. Раздвижное сопло ракетного двигателя содержит стационарный раструб и сдвигаемые насадки, цилиндрические оболочки внутри каждого насадка, кольцевой выступ на наружной поверхности и установленное на законцовке подвижное фиксирующее кольцо. Каждая цилиндрическая оболочка состыкована со сдвигаемым насадком по цилиндрической поверхности со стороны меньшего диаметра и имеет в зоне стыковки меридиональные разрезы. Внутренний диаметр цилиндрической поверхности насадка равен и внутреннему диаметру цилиндрической оболочки. На внутренней поверхности насадка, в зоне перехода цилиндрической поверхности в коническую, выполнена кольцевая проточка, в которой размещена законцовка цилиндрической оболочки с кольцевым выступом. Ширина проточки от начала конической поверхности насадка выполнена таким образом, что при выдвинутом положении насадка законцовка цилиндрической оболочки находится за срезом неподвижного раструба. Подвижное фиксирующее кольцо установлено внутри законцовки цилиндрической оболочки. Наружный диаметр подвижного фиксирующего кольца равен внутреннему диаметру цилиндрической оболочки. Изобретение позволяет уменьшить зазор в стыке неподвижного раструба и сдвигаемого насадка и снизить массу сопла. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ракетным двигателям, в которых используется центральное тело с расположенными вокруг него индивидуальными камерами сгорания. Жидкостной ракетный двигатель (ЖРД) состоит из рамы, центрального тела с профилированной поверхностью, расположенной коаксиально продольной оси двигателя, и нескольких индивидуальных камер сгорания с профилированными сверхзвуковыми соплами, расположенными вокруг центрального тела, и закрепленных на двигательной раме. Согласно изобретению между индивидуальными камерами сгорания в районе сверхзвуковых сопел установлены выполненные из углерод-углеродного композиционного материала и прикрепленные к двигательной раме обтекатели, боковые поверхности которых являются продолжением профилированных поверхностей сверхзвуковых сопел индивидуальных камер сгорания, при этом с наружной стороны обтекатели имеют цилиндрическую поверхность с радиусом, равным радиусу наружной поверхности двигателя, а с внутренней стороны ограничены профилированной поверхностью центрального тела. Изобретение обеспечивает увеличение тяги двигателя и повышение его эффективности за счет увеличения удельного импульса тяги. 3 ил.

Изобретение относится к ракетным двигателям, в которых для управления вектором тяги в полете используются различные органы управления, расположенные у среза сопла или внутри него. ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, рулевые агрегаты и раму, на наружной поверхности охлаждаемой сверхзвуковой части сопла в районе среза выполнено четыре сектора со сферической наружной поверхностью с центром, расположенным на оси камеры, и боковыми стенками, соединяющими сферические поверхности секторов, с наружной поверхностью охлаждаемой сверхзвуковой частью сопла, на которые установлены части дефлектора, выполненные из углерод-углеродного композиционного материала (УУКМ), наружные и внутренние поверхности которого, эквидистантные наружной поверхности секторов, закреплены к сферическим секторам с помощью фасонных кронштейнов, расположенных по бокам частей дефлектора и имеющих эквидистантные внутренние поверхности относительно наружных поверхностей дефлектора, имеющих зазор между собой для крепления кронштейна, расположенного на наружной поверхности частей дефлектора, при этом все эквидистантные поверхности сферических секторов, частей дефлектора и кронштейнов имеют графитовое покрытие. Изобретение обеспечивает повышение эффективности, ресурса работы и получения большей величины бокового управляющего усилия и уменьшения усилия на рулевых органах. 3 ил.

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера жидкостного ракетного двигателя с регулируемым соплом содержит охлаждаемую часть сопла и неохлаждаемый насадок из углерод-углеродного композиционного материала, рулевые агрегаты и раму, согласно изобретению в неохлаждаемом насадке выполнены ниши, в которых расположены несколько секций разъемного земного сопла, имеющих валы вращения, расположенные по касательным в районе стыка неохлаждаемого насадка с охлаждаемой частью сопла, установленные в кронштейны, закрепленные на охлаждаемой части сопла и соединенные рулевыми агрегатами с рамой двигателя. Изобретение обеспечивает повышение эффективности и надежности работы ЖРД по всей траектории полета ракеты. 3 ил.

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера жидкостного ракетного двигателя с регулируемым соплом содержит охлаждаемую часть сопла и неохлаждаемый насадок из углерод-углеродного композиционного материала, рулевые агрегаты и раму, согласно изобретению в неохлаждаемом насадке выполнены ниши, в которых расположены несколько секций разъемного земного сопла, имеющих валы вращения, расположенные по касательным в районе стыка неохлаждаемого насадка с охлаждаемой частью сопла, установленные в кронштейны, закрепленные на охлаждаемой части сопла и соединенные рулевыми агрегатами с рамой двигателя. Изобретение обеспечивает повышение эффективности и надежности работы ЖРД по всей траектории полета ракеты. 3 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке поворотных управляющих сопел изменяемой геометрии для ракетных двигателей. Поворотное управляющее сопло ракетного двигателя состоит из соединенных узлом качания неподвижной и подвижной частей, с расположенным на срезе раструба подвижной части раскладным сопловым насадком и механизмом его разложения, выполненным в виде нескольких равномерно расположенных вокруг сопла раздвижных телескопических штанг. Сопловой насадок образован раструбом из гибкого композиционного материала и опорными кольцами, установленными с интервалами вдоль оси сопла и соединенными с помощью шарниров с механизмом разложения насадка. Ближайшее к срезу раструба подвижной части сопла опорное кольцо закреплено в зоне максимального сечения раструба подвижной части сопла таким образом, что оно образует продолжение подвижной части. Опорные кольца в сложенном состоянии размещены так, что своими максимальными сечениями образуют зону, подобную по форме переднему днищу предыдущей ступени. Изобретение позволяет повысить баллистическую эффективность ракеты за счет уменьшения общей длины ракеты при наличии габаритных ограничений, сокращения длины и массы межступенных отсеков или за счет увеличения длины и массы топливного заряда ракетного двигателя при сохранении общей длины ракеты. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике и может быть использовано при разработке поворотных управляющих сопел изменяемой геометрии для ракетных двигателей. Поворотное управляющее сопло ракетного двигателя состоит из соединенных узлом качания неподвижной и подвижной частей, с расположенным на срезе раструба подвижной части раскладным сопловым насадком и механизмом его разложения, выполненным в виде нескольких равномерно расположенных вокруг сопла раздвижных телескопических штанг. Сопловой насадок образован раструбом из гибкого композиционного материала и опорными кольцами, установленными с интервалами вдоль оси сопла и соединенными с помощью шарниров с механизмом разложения насадка. Ближайшее к срезу раструба подвижной части сопла опорное кольцо закреплено в зоне максимального сечения раструба подвижной части сопла таким образом, что оно образует продолжение подвижной части. Опорные кольца в сложенном состоянии размещены так, что своими максимальными сечениями образуют зону, подобную по форме переднему днищу предыдущей ступени. Изобретение позволяет повысить баллистическую эффективность ракеты за счет уменьшения общей длины ракеты при наличии габаритных ограничений, сокращения длины и массы межступенных отсеков или за счет увеличения длины и массы топливного заряда ракетного двигателя при сохранении общей длины ракеты. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого топлива продуктами сгорания воспламенителя, расположенного в предсопловом объеме и инициируемого продуктами сгорания замедлителя. Зажигание зарядов замедлителя осуществляют продуктами сгорания пиропатронов, срабатывающих при вылете снаряда из ствола орудия и размещенных в замкнутой полости, образуемой перфорированной диафрагмой, разделяющей предсопловой объем и диффузор сопла, и срезаемой крышкой сопла, расположенной в его выходном сечении. Заряды замедлителя выполнены в форме усеченных конусов, основания которых направлены в сторону выходного сечения сопла, и герметично размещены через термоизолирующие прокладки в перфорациях диафрагмы. Высоту зарядов замедлителя определяют по алгебраической формуле, включающей оптимальное значение времени задержки зажигания заряда твердого топлива, которое предварительно определяют из серии внешнебаллистических расчетов дальности полета конкретного активно-реактивного снаряда. Изобретение позволяет обеспечить увеличение дальности полета активно-реактивного снаряда и надежное зажигание его заряда твердого топлива. 1 з.п. ф-лы, 5 ил., 3 табл.
Наверх