Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина. Осуществление изобретения позволяет существенно упростить конструкцию системы регулирования подачи воздуха для охлаждения турбины ДТРД, повысить ее надежность, а также производить плавное изменение расхода охлаждающего воздуха на всех режимах работы двигателя. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к системам управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) с воздухо-воздушным теплообменником в наружном контуре. Такая система предназначена для повышения экономичности двигателя за счет поддержания минимального расхода топлива на длительных, как правило, крейсерских режимах и обеспечения максимальной тяги на взлетном режиме.

Из известных устройств наиболее близким по технической сущности к предложенному является "Система управления расходом воздуха, охлаждающего турбину двухконтурного турбореактивного двигателя" (см. патент РФ 2194179, F02C 9/00 от 07.08.2000).

Эта система в созданных конструкциях двигателей и представленная в патенте прототипа требует создания сложного агрегата управления, расположенного снаружи двигателя на наружном контуре с подводом к нему топлива из системы регулирования, и воздушных трубопроводов из внутреннего контура от коллектора охлаждающего воздуха теплообменников и обратно к внутреннему контуру в качестве командного давления к двухступенчатому клапану. Это означает, что воздушные трубопроводы высокого давления (до 47 кг/см2) должны дважды пройти через проточную часть наружного контура двигателя, а это обычно представляет непростую техническую задачу. Для подвода командного давления к каждому клапану требуется отдельный коллектор, что так же усложняет конструкцию двигателя. Кроме того, конструкция клапана в указанной системе не может быть выполнена с одноступенчатым уплотнительным поясом на поршне, а только двухступенчатой с разными диаметрами уплотнительных поясов, что создает дополнительные сложности при изготовлении, при обеспечении соосности, сборки, герметичности и др.

Клапаны прототипа имеют возможность регулировать проход охлаждающего воздуха только в двух положениях - открыто и закрыто, без промежуточных положений, а это ограничивает плавность регулировки расхода воздуха в более широком диапазоне.

Задачей предлагаемого изобретения является создание плавного регулирования подачи воздуха для охлаждения турбины и повышение надежности работы за счет упрощения конструкции и системы управления расходом воздуха.

Указанная задача решается тем, что в известной системе управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя, содержащей перекрывающие устройства, выполненные в виде поршневых клапанов, установленных перед входом в охлаждающий тракт турбины, теплообменник, установленный в наружном контуре, выход которого сообщен с коллектором охлаждающего воздуха, и лопаточный коллектор, сообщенный с охлаждаемыми полостями лопаток турбины, причем вход клапана сообщен с коллектором охлаждающего воздуха, а выход - с лопаточным коллектором, согласно изобретению каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

Пружины в разных клапанах могут быть выполнены с различной жесткостью.

Такое выполнение устройства позволяет создать эффективную систему управления охлаждением лопаток турбины без применения специальной системы, формирующей команды на управление перекрывающих устройств, а также отказаться от сложного агрегата управления, расположенного снаружи двигателя на наружном контуре с подводящими топливными трубопроводами, через которые передается команда от системы управления двигателем, и с подводящими воздушными трубопроводами. Упрощается конструкция всей системы и поршневого клапана, а следовательно, повышается надежность.

Наличие пружины в перекрывающем устройстве позволяет производить плавное открытие клапана и плавное увеличение дозирования охлаждающего воздуха, что позволяет обеспечить более плавную регулировку расхода подаваемого на охлаждение лопаток воздуха и повышает общую экономичность двигателя на переходных режимах.

Выполнение пружин клапанов с различной жесткостью может привести к их разному началу открытия при разных давлениях на входе в клапан, а это в свою очередь позволит увеличить диапазон плавной регулировки подачи охлаждающего воздуха в охлаждаемые полости лопаток и турбины для разных режимов работы двигателя.

Пример выполнения изобретения приведен на прилагаемых чертежах.

На фиг. 1 показана система управления расходом воздуха для охлаждения турбины ДТРД при закрытом положении клапана;

на фиг. 2 - система управления расходом воздуха для охлаждения турбины ДТРД при частично открытом положении клапана;

на фиг. 3 - система управления расходом воздуха для охлаждения турбины ДТРД при полностью открытом положении клапана.

Система управления расходом воздуха для охлаждения турбины ДТРД содержит перекрывающие устройства 1 с поршневыми клапанами 2, установленными перед входом в охлаждающий тракт турбины, теплообменник 3 (воздухо-воздушный теплообменник ВВТ), установленный в наружном контуре 4. Выход из теплообменника 5 сообщен с коллектором охлаждающего воздуха 6. Система содержит лопаточный коллектор 7, сообщенный с охлаждаемыми полостями 8 лопаток турбины, причем канал входа клапана 9 сообщен с коллектором охлаждающего воздуха 6, а канал выхода 10 - с лопаточным коллектором 7. Клапан 2 выполнен однопоршневым, его вход 9 размещен со стороны надпоршневой полости 11, выход 10 - со стороны боковой поверхности поршня 12, а подпоршневая полость 13 сообщена с наружным контуром 4 и в ней установлена пружина 14. Применение жаростойких пружин (например, по ОСТ 103682-74 до 500°С) позволяет не опасаться за их перегрев.

Уплотнение между выходом клапана 10 и подпоршневой полостью 13 поршневого клапана 2 выполнено в виде поршневых колец 15.

Пружины 14 поршневых клапанов 2 могут быть выполнены с различной жесткостью для различного начала срабатывания клапанов.

Пружина 14 поджата к поршневому клапану гайкой 16. Настройка срабатывания поршневого клапана производится путем установки или снятия регулировочных шайб 17. Коллектор охлаждающего воздуха 6 образован корпусом внутреннего контура двигателя 18 и внутренней обечайкой 19. Лопаточный коллектор 7 охлаждающего воздуха образован корпусом внутреннего контура двигателя 18 и внутренним корпусом 20.

В поршневом клапане 2 выполнены постоянно дросселирующие отверстия 21. Вход в теплообменник 3 расположен в полости за компрессором высокого давления (не показан).

В начале работы двигателя пружина 14 прижимает поршневой клапан 2 к седлу 22 в корпусе перекрывающего устройства 1. В этом положении воздух из теплообменников 3 в охлаждаемые полости лопаток турбины 8 не поступает, но частично может проходить через постоянно дросселирующие отверстия 21. По мере раскрутки двигателя давление за компрессором высокого давления и соответственно в канале 9 за теплообменником 3 (на чертеже Рввт) повышается и в какой-то момент преодолевает усилие пружины 14 и давление в наружном контуре 4 (на чертеже Рнк). Клапан 2 передвигается вправо и открывает проходное сечение перекрывающего устройства 1 на высоту H1 (фиг. 2), осуществляя частичный перепуск охлаждающего воздуха в полость охлаждения лопаток и повышая давление в этой полости (Рохл). Настройка пружины дозатора должна обеспечивать начало перепуска воздуха преимущественно на режимах выше крейсерского. Кроме того, характеристики пружины должны обеспечивать полное раскрытие проходного сечения Н2 (фиг. 3) и максимальный расход воздуха для охлаждения лопаток на максимальных режимах работы двигателя. Описанную работу дозатор должен обеспечить на одном из выбранных режимов работы двигателя, обычно это крейсерский режим на высоте около 9…11 км.

Земные и околоземные характеристики двигателя отличаются от высотных в сторону больших давлений воздуха и газа по тракту двигателя. И на большинстве земных режимов двигателя клапан будет открыт, включая и крейсерский режим. Но на крейсерском режиме у земли самолеты обычно не летают. Самый распространенный режим работы двигателя у земли - взлетный, на нем двигатель должен обеспечить максимальную тягу и максимальное охлаждение лопаток, что предлагаемая система и позволяет выполнить.

Предложенная система регулирования расхода воздуха для охлаждения турбины ДТРД позволяет существенно упростить конструкцию всей системы регулирования подачи воздуха для охлаждения турбины, снизить вес и повысить надежность системы за счет отказа от агрегата управления, расположенного снаружи двигателя, на наружном контуре с подводящими топливными и воздушными трубопроводами.

Предложенная система позволяет производить плавное изменение расхода охлаждающего воздуха на режимах работы двигателя от крейсерского до максимального (в прототипе расход воздуха изменяется скачком после срабатывания поршневого клапана).

Такую систему изменения расхода охлаждающего воздуха можно рекомендовать к применению на пассажирских, транспортных и других малорежимных двигателях для летательных аппаратов.

1. Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя, содержащая перекрывающие устройства, выполненные в виде поршневых клапанов, установленных перед входом в охлаждающий тракт турбины, теплообменник, установленный в наружном контуре, выход которого сообщен с коллектором охлаждающего воздуха, и лопаточный коллектор, сообщенный с охлаждаемыми полостями лопаток турбины, причем вход клапана сообщен с коллектором охлаждающего воздуха, а выход - с лопаточным коллектором, отличающаяся тем, что каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

2. Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя по п. 1, отличающаяся тем, что пружины поршневых клапанов выполнены с различной жесткостью.



 

Похожие патенты:

Группа изобретений относится к способу и системе регулирования мощности в случае отказа двигателя летательного аппарата. Для регулирования мощности при отказе по меньшей мере одного двигателя летательного аппарата увеличивают пределы работы основной силовой установки типа двигателя (GPP) в соответствии с тремя аварийными режимами, расположенными последовательно в порядке уменьшения уровня мощности.

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах 10% в диапазоне выходных уровней мощности; и обработку отработавшего газа двигателя в процессе селективного каталитического восстановления таким образом, что генерация NOx и соответствующий поток восстановителя, используемого в процессе селективного каталитического восстановления, остаются относительно постоянными в терминах массового (молярного) потока в диапазоне выходных уровней мощности, и регулируется проскок аммиака.

Изобретение относится к энергетике. Способ передачи топлива включает подачу воды к по меньшей мере одной форсунке главного топливного контура.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), основанного на программном изменении коэффициента избытка воэдуха в первичной зоне горения.

Использование: в системах измерения температуры газа газотурбинных двигателей (ГТД). Технический результат: повышение помехоустойчивости измерителя температуры газа ГТД.

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДДсм и ТРДДсм с форсажной камерой сгорания ТРДДФсм и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла.

Изобретение относится к способам регулирования турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Изобретение относится к газотурбостроению и авиадвигателестроению, более конкретно - к системам измерения частоты вращения ротора газотурбинных двигателей, имеющих циркуляционную систему смазки подшипниковых опор, включающую системы подачи масла и суфлирования, в частности к системам измерения частоты вращения ротора турбин газотурбинных двигателей наземного использования.

Изобретение относится к машиностроению, в частности к ограничителям температуры газа перед турбиной, может быть использовано в газотурбинных двигателях летательных аппаратов и позволяет обеспечить возможность настройки ограничителя с учетом полетных условий.

Изобретение относится к машиностроению, в частности к определению при испытаниях коэффициента расхода газа через сопловой аппарат турбины, и может быть использовано в двухконтурных газотурбинных двигателях.

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе. Способ может включать регулирование клапана управления для соответствия требуемому расходу топлива, определение фактического расхода топлива на основе, по меньшей мере частично, давления на входе в топливный коллектор и одного или более параметров газотурбинного двигателя и сравнение требуемого расхода топлива с фактическим расходом топлива. Кроме того, способ может включать определение разности между требуемым расходом топлива и фактическим расходом топлива, которая указывает на утечку топлива. 3 н. и 17 з.п. ф-лы, 3 ил.

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах. Сущность изобретения: измеритель температуры газа газотурбинного двигателя дополнительно содержит последовательно соединенные блок гистерезиса, элемент схемы «И», первый переключатель, второй интегратор, второй переключатель, блок памяти ошибок модели, четвертый сумматор, выход которого подключен ко второму входу элемента сравнения, общая шина подключена ко второму входу первого и второго переключателей, кнопка пользователя подключена ко второму входу элемента схемы «И» и управляющему входу второго переключателя, выход модели температуры газа подключен к четвертому сумматору, выход датчика частоты вращения ротора высокого давления подключен ко второму входу блока памяти ошибок модели, выход дифференциатора подключен ко входу блока гистерезиса, выход элемента сравнения подключен к третьему входу первого переключателя, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому его входу соответственно. 8 ил.

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура. Также имеется термочувствительный элемент, расположенный внутри второй полости и функционально связанный с элементом теплопередачи. Также имеется устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью смещения в ответ на изменение температуры в первой полости. Изобретение позволяет повысить эффективность работы газотурбинной системы. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Способ и устройство предназначены для остановки генератора с целью подготовки его к повторному запуску. Из рабочего состояния инициируют последовательность остановки газовой турбины генератора. Продувочный газ нагнетают в газовую турбину для гашения пламени в камере сгорания газовой турбины. Продувочный газ пропускают через газовую турбину для вытеснения из нее топлива с использованием воздушного потока выбега через газовую турбину во время последовательности остановки с целью подготовки генератора к повторному пуску. Изобретение позволяет повысить эффективность остановки генератора и подготовки его к повторному запуску. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения. Стенд для испытаний газотурбинных двигателей включает нагрузочное устройство, имеющее возможность соединения с валом свободной силовой турбины испытуемого газотурбинного двигателя. В качестве нагрузочного устройства использован синхронный реверсивный турбогенератор, вал ротора которого имеет возможность соединения одним концом с валом свободной силовой турбины испытуемого газотурбинного двигателя, причём другой свободный конец ротора турбогенератора может быть оснащен механическим тормозным устройством. Стенд оснащен системой возбуждения турбогенератора, автономной активной балластной нагрузкой и командным блоком. Статорные электрические цепи турбогенератора имеют возможность подключения к балластной нагрузке, электрические цепи обмоток ротора турбогенератора подключены к системе возбуждения, при этом турбогенератор содержит датчик частоты вращения его вала, связанный с командным блоком, подключенным к системе возбуждения и имеющим возможность подключения к сектору газа испытуемого газотурбинного двигателя. Изобретение позволяет расширить функциональные возможности стенда. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора дополнительно формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения. При полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги. Изобретение позволяет повысить надежность переключения регулятором двигателя на программу управления направляющими аппаратами компрессора, обеспечивающую минимальный расход топлива в заданном диапазоне тяги, при переходе на крейсерский режим работы двигателя, и, как следствие, также позволяет снизить расход топлива на указанном режиме. 2 ил., 1 табл.

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета. В способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры. Затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива. Далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха. Изобретение позволяет снизить расход топлива на форсированном режиме работы двигателя. 2 табл.

Изобретение относится к способам управления расходом воздуха, охлаждающего турбину, преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре. Для перекрытия клапана поршень поворачивают или перемещают относительно корпуса клапана механизмом перемещения, дополнительно положение поршней всех клапанов изменяют синхронно до промежуточных положений в интервале от положения "открыто" в положение "закрыто" и, наоборот, при этом расход воздуха изменяют и фиксируют одновременно на всех клапанах с помощью средства передачи управляющего воздействия, связанного с механизмом перемещения каждого клапана и системой управления, причем средство передачи управляющего воздействия на расход воздуха выполнено механическим и/или электрическим. Предусмотрено, что в положении "закрыто" на всех клапанах одновременно обеспечивают с помощью системы управления минимально допустимый "дежурный" расход охлаждающего воздуха, необходимый для уменьшения до минимума концевых потерь за профилями на сопловом аппарате и рабочих лопатках турбины. Технический результат – уменьшение удельного расхода топлива на всех режимах эксплуатации, повышение стабильности охлаждения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в системах автоматического регулирования газовых турбин электростанций для перевода газовых турбин в режим регулирования скорости вращения при снижении частоты в энергосистеме. В способе регулирования газовых турбин, включающем измерение частоты вращения ротора генератора газовой турбины в режиме реального времени, сравнение текущего значения частоты вращения с заданными уставками каждой из ступеней технологической защиты газовой турбины и формирование защитных сигналов, при выявлении снижения частоты вращения до уставки одной из ступеней технологической защиты начинают отсчет времени для этой ступени. В случае превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание отсчет времени прекращают, при этом продолжают вести отсчет времени для ступеней с более высокими уставками по частоте. В случае отсутствия превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание формируют защитный сигнал данной ступени на перевод газовой турбины из режима поддержания мощности с коррекцией по частоте в режим регулирования скорости вращения и на отключение генератора от сети. Изобретение позволяет повысить надежность и живучесть электростанции за счет повышения надежности работы газовых турбин при глубоких снижениях частоты в энергосистеме.

Изобретение относится к электротехнике, тепло- и электроэнергетике, а именно к когенерационным системам получения энергии для энергоснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя и тепла для обеспечения собственных нужд предприятий минерально-сырьевого комплекса, находящихся вдали от действующих систем централизованного электроснабжения без связи с единой энергосистемой. Система генерирования электрической и тепловой энергии снабжена двумя изолированными контурами, системой парогенерирования, первой и второй секцией шин с секционным выключателем, блоком синхронизации, первым и вторым пассивными фильтрами, и также активным фильтром. Изобретение позволяет повысить эффективность функционирования энергетической установки параллельно с сетью за счет фильтрации высших гармонических составляющих вырабатываемого тока посредством активного фильтра и синхронизацией тока по фазе через синхронизирующее устройство, а также использования в блоке утилизации выхлопных газов двух изолированных контуров циркуляции энергоносителя. 1 ил.
Наверх