Скважинный погружной насос с газосепаратором

Изобретение относится к нефтедобывающей промышленности и может быть использовано для добычи нефти при большом содержании газа в откачиваемой жидкости. Скважинный погружной насос содержит газосепаратор. Корпус насоса разделен перегородкой на две полости. Между нижней частью корпуса и перегородкой образован гидрозатвор. Входное окно для откачиваемой скважинной жидкости расположено на корпусе выше гидрозатвора. Между входным окном и гидрозатвором образована камера дегазирования. Входное окно для откачиваемой скважинной жидкости является одновременно и выходным окном для отделившегося свободного газа из камеры дегазирования. Камера дегазирования снабжена устройством принудительного дегазирования. Оно выполнено в виде геометрических элементов для резкого увеличения или уменьшения сечения потока скважинной жидкости в виде чередующихся перегородок, перфорированных решеток или завихрителя потока. Повышается КПД насоса и уменьшается газообразование в насосной камере. Может работать с любыми типами выпускаемых скважинных плунжерных насосов. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для добычи нефти при большом содержании растворенного газа в откачиваемой жидкости.

Известен скважинный газосепаратор, содержащий корпус с газозащитной камерой, которая имеет каналы для прохода скважинной жидкости и дегазационную камеру, которая имеет газовыпускной клапан. Дегазационная камера установлена последовательно с газозащитной камерой. В дегазационной камере размещена всасывающая труба. Она выполнена с возможностью гидравлической связи с насосом. Верхнюю часть дегазационной камеры и нижнюю часть газозащитной камеры соединяет подводящая труба. При этом газозащитная камера выполнена с возможностью концентричного размещения в ней подводящей трубы. Она установлена эксцентрично относительно дегазационной камеры. Обе трубы выполнены с нижними торцевыми заглушками. Диаметр подводящей трубы выполнен из условия пропуска за цикл всасывания объема скважинной жидкости, равного 60-75% объема жидкости, отбираемой насосом. Диаметр газозащитной камеры выполнен из условия, что площадь ее кольцевого сечения не меньше площади проходного сечения подводящей трубы (патент РФ №2079649, 30.06.1994).

Недостатком этого скважинного газосепаратора является то, что применена система газоотделения в виде резкого изменения направления потока жидкости, которая недостаточна и не очень эффективна для газоотделения из откачиваемой жидкости, а направления потоков откачиваемой жидкости и отделившегося свободного газа совпадают и направлены снизу вверх. Кроме того, чем больше удельный вес материала запорного органа газовыпускного клапана, тем больше свободного газа в виде газовой шапки будет оставаться в верхней части дегазационной камеры при закрытом газовыпускном клапане. При определенных условиях газовыпускной клапан может не открыться совсем.

Известен скважинный штанговый насос с газосепаратором, содержащий подводящий патрубок с отверстиями в верхней части и завихрителем потока, сепарационную камеру с газовыпускным клапаном, всасывающий коллектор, сообщающийся с нижней частью сепарационной камеры. Верхняя часть подводящего патрубка с завихрителем потока концентрично размещена в сепарационной камере. Эта камера установлена во всасывающем коллекторе. Гидравлическая длина подводящего патрубка и сепарационной камеры обеспечивают гидрозатвор для предупреждения прохода газа (патент РФ №2159330, 13.05.1999).

Недостатком этого скважинного штангового насоса с газосепаратором является то, что применена система газоотделения в виде резкого изменения направления потока жидкости, которая недостаточна и не очень эффективна для газоотделения из откачиваемой жидкости, а направления потоков откачиваемой жидкости и отделившегося свободного газа совпадают и направлены снизу вверх, особенно после завихрителя. Кроме того, чем больше удельный вес материала запорного органа газовыпускного клапана, тем больше свободного газа в виде газовой шапки будет оставаться в верхней части сепарационной камеры при закрытом газовыпускном клапане. При определенных условиях газовыпускной клапан может не открыться совсем.

Наиболее близким к изобретению по технической сущности и достигаемому результату является скважинный штанговый насос, содержащий цилиндр с размещенным в нем полым плунжером, в нижней части которого установлен нагнетательный клапан. Всасывающий клапан установлен в нижней части насосной камеры. Насос снабжен перепускным каналом с поплавковым клапаном, выполненным с запорным поплавковым элементом и расположенным над ним седлом. Цилиндр выполнен со стороны внутренней поверхности ступенчатым, а перепускной канал с запорным поплавковым элементом выполнен в нижней части меньшей ступени цилиндра над насосной камерой. Одно отверстие канала соединено с верхней частью насосной камеры, а другое отверстие канала соединено со скважиной (патент РФ №2440513, 29.09.2010).

Недостатком этого скважинного штангового насоса является то, что применен ступенчатый цилиндр, что ведет к изменению конструкции стандартного скважинного штангового насоса, а также использован нестандартный поплавковый клапан.

Задачей настоящего изобретения является принудительное газоотделение из скважинной жидкости с последующим удалением образовавшегося свободного газа до его попадания в насосную камеру насоса с использованием широко применяемых стандартных погружных насосов, а также обеспечение противопотока скважинной жидкости и отделившегося свободного газа.

Технический результат - повышение КПД насоса и уменьшение негативного влияния газового фактора на его работу.

Указанная задача решается, а технический результат достигается за счет того, что в скважинном погружном насосе с газосепаратором, содержащим цилиндр с размещенным в нем полым плунжером, в нижней части которого установлен нагнетательный клапан, имеющим насосную камеру с всасывающим клапаном, соединенную с газосепаратором, согласно изобретению корпус газосепаратора разделен перегородкой на две полости, между нижней частью корпуса и перегородкой образован гидрозатвор, входное окно для откачиваемой скважинной жидкости расположено на корпусе выше гидрозатвора, а между входным окном и гидрозатвором образована камера дегазирования, причем входное окно для откачиваемой скважинной жидкости является одновременно и выходным окном для отделившегося свободного газа из камеры дегазирования.

Предпочтительно, что камера дегазирования снабжена устройством принудительного дегазирования, выполненным в виде геометрических элементов для резкого увеличения или уменьшения сечения потока скважинной жидкости.

Кроме того, геометрические элементы для резкого увеличения или уменьшения сечения потока скважинной жидкости выполнены в виде чередующихся перегородок, перфорированных решеток или завихрителя потока.

На фиг. 1 - показан скважинный погружной насос с газосепаратором в начале процесса всасывания, на фиг. 2 - скважинный погружной насос с газосепаратором в конце процесса нагнетания. Сплошными стрелками показаны потоки жидкости, а пунктирными - показаны газовые потоки.

Скважинный погружной насос с газосепаратором (фиг. 1) состоит из корпуса 1, внутренний объем которого разделен вертикальной перегородкой 2 на две полости, первая из которых является насосной полостью 3, а вторая - представляет собой камеру дегазирования 4. Корпус 1 установлен в нижней части штангового глубинного насоса 5, который состоит, в свою очередь, из полого плунжера 6, находящегося подвижно в цилиндре 7. На нижнем конце плунжера 6 установлен нагнетательный клапан 8. В нижней части цилиндра 7 расположен всасывающий клапан 9. Насосная полость 3 соединена гидравлически через всасывающий клапан 9 с насосной камерой 10 штангового глубинного насоса 5, а камера дегазирования 4 соединена гидравлически со скважинной полостью 11, с находящейся в ней скважинной жидкостью 12 через входное окно 13. Насосная полость 3 и дегазационная камера 4 гидравлически соединены между собой в нижней части корпуса 1 с образованием гидрозатвора 14. В дегазационной камере 4 установлено устройство принудительного дегазирования 15, состоящее из чередующихся перегородок 16 и\или перфорированных решеток 17 и\или завихрителя потока 18. Расстояние H1 от нижнего среза перегородки 2 гидрозатвора 14 до нижней части устройства принудительного дегазирования 15 и расстояние Н2 от нижнего среза перегородки 2 гидрозатвора 14 до нижнего среза входного окна 13 являются расчетными величинами и зависят от свойств скважинной жидкости 12, характеристик штангового глубинного насоса 5, параметров откачивания и т.д. Вид устройства принудительного дегазирования 15 (чередующиеся перегородки 16, перфорированные решетки 17, завихритель потока 18 или иные геометрические элементы и физические устройства для провоцирования выделения из потока скважинной жидкости 12 растворенного в нем газа), его конфигурация, количество газоотделяющих элементов и т.д. определяются расчетно-опытным путем. Устройство принудительного газообразования 15 обеспечивает гораздо более значительные условия (перепады давления, скорость потока и т.д.) для выделения свободного газа из скважинной жидкости 12, чем те, которые возникают при прохождении скважинной жидкости 12 через всасывающий клапан 9, а именно через отверстие седла 19 и кольцевое пространство вокруг запорного органа 20 всасывающего клапана 9. В качестве запорного органа 20 может быть применен стандартный массивный металлический шар или золотниковый элемент.

Скважинный погружной насос с газосепаратором работает следующим образом. В начале процесса всасывания (фиг. 1), когда плунжер 2 начинает движение вверх, идет расширение объема насосной камеры 10 с падением давления (РР), и когда давление (PW) скважинной жидкости 12 в скважинной полости 11 превысит давление (РР), в насосной камере 10 открывается запорный орган 20, через который скважинная жидкость 12 поступает в насосную камеру 10. Скважинная жидкость 12 сначала поступает в камеру дегазирования 4 через входное окно 13 и проходит через устройство принудительного дегазирования 15, где свободный газ отделяется из скважинной жидкости 12 и идет наверх против потока скважинной жидкости 12, идущего вниз. Дойдя до входного окна 13, свободный газ выходит через него в скважинную полость 11 и поднимается дальше по ней вверх. Отгазированная скважинная жидкость 12 поступает из дегазационной камеры 4 через гидрозатвор 14 в насосную полость 3 и далее в насосную камеру 10 уже без свободного газа. Если к началу движения плунжера 6 вниз в дегазационной камере 4 остается свободный газ, то он продолжает выходить из нее в скважинную полость 11 через входное окно 13. Так как образование свободного газа происходит в основном при прохождении скважинной жидкости 12 через запорный орган 20 под действием перепада давления (PW) в скважинной полости 11 и давления (РР) в насосной камере 10, учитывая, что весь свободный газ образовался при прохождении скважинной жидкости 12 через устройство принудительного дегазирования 15, которое создало для скважинной жидкости 12 гораздо более значительные условия для выделения свободного газа, чем те, которые возникают при прохождении скважинной жидкости 12 через всасывающий клапан 9, а именно через отверстие седла 19 и кольцевое пространство вокруг запорного органа запорного органа 20, то в скважинной жидкости 12, поступающей в насосную камеру 10, свободный газ будет уже отсутствовать.

В начале процесса вытеснения (нагнетания) (фиг. 2) плунжер 6 начинает движение вниз, запорный орган 20 закрыт, а давление (РТ) столба скважинной жидкости 12, находящейся выше нагнетательного клапана 8, держит его закрытым. При дальнейшем движении вниз плунжера 6 возрастающее давление (РР) в насосной камере 10, достигнув значения давления жидкости (РТ) выше нагнетательного клапана 8, а затем и превысив его, открывает нагнетательный клапан 8 и скважинная жидкость 12 из насосной камеры 10 начинает поступать через открытый нагнетательный клапан 8 в полость плунжера 6. При достижении плунжером 6 своего крайнего нижнего положения вектор движения плунжера 6 меняется на противоположный и цикл повторяется.

Вышеизложенное позволяет увеличить заполнение насоса, что улучшает его эффективность. Газоотделение происходит при любой длине хода плунжера и при любом числе его двойных ходов. Газосепаратор может быть исполнен как отдельный узел, который может устанавливаться, например, на резьбе на любой стандартный штанговый глубинный насос.

Преимущество изобретения состоит в том, что устройство принудительного газообразования может устанавливаться на всасывающем коллекторе других типов и видов объемных или лопастных насосов, где имеется проблема с образованием свободного газа при откачке скважинной жидкости с наличием растворенного газа с целью дегазирования поступающей во всасывающий коллектор насоса скважинной жидкости.

1. Скважинный погружной насос с газосепаратором, содержащий цилиндр с размещенным в нем полым плунжером, в нижней части которого установлен нагнетательный клапан, насосную камеру с всасывающим клапаном, соединенную с газосепаратором, отличающийся тем, что корпус газосепаратора разделен перегородкой на две полости, между нижней частью корпуса и перегородкой образован гидрозатвор, входное окно для откачиваемой скважинной жидкости расположено на корпусе выше гидрозатвора, а между входным окном и гидрозатвором образована камера дегазирования, причем входное окно для откачиваемой скважинной жидкости является одновременно и выходным окном для отделившегося свободного газа из камеры дегазирования.

2. Насос по п. 1, отличающийся тем, что камера дегазирования снабжена устройством принудительного дегазирования, выполненным в виде геометрических элементов для резкого увеличения или уменьшения сечения потока скважинной жидкости.

3. Насос по п. 2, отличающийся тем, что геометрические элементы для резкого увеличения или уменьшения сечения потока скважинной жидкости выполнены в виде чередующихся перегородок, перфорированных решеток или завихрителя потока.



 

Похожие патенты:

Группа изобретений относится к способам и устройствам для перекачивания текучих сред и может быть использована в промышленности, на транспорте, в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред, в том числе при эксплуатации скважин в нефтедобывающей промышленности.

Изобретение относится к области насосостроения и может быть применено в гидротранспортных и энергетических системах, а также в водоснабжении. Устройство для подъема воды включает погружаемое тело водоподъемника и средства для осуществления его движения.

Изобретение относится к области насосостроения и может быть использовано для скважинной добычи нефти с повышенной вязкостью и высоким содержанием газа. В верхней части насоса расположены отсечной клапан и механическое уплотнение полого штока.

Группа изобретений относится к способу эксплуатации дожимных насосных станций, содержащих центробежные сепараторные фильтры, на нефтяных месторождениях. Центробежный сепараторный фильтр содержит вертикальный корпус, имеющий центральную часть, по существу, цилиндрической формы и верхнюю и нижнюю части, по существу, полусферической формы, тангенциальный впуск текучей среды, содержащей нефть и частицы, подлежащие фильтрации, расположенный в верхней части корпуса, осевую трубу с выпуском отфильтрованной текучей среды, имеющую концентрическое расположение с корпусом и закрепленную в его верхней части, множество конусных пластин, расположенных вокруг осевой трубы друг под другом, причем основание конусных пластин направлено вниз относительно положения корпуса, выпуск удаленных из текучей среды частиц, расположенный в нижней части корпуса.

Изобретение относится к нефтедобывающей отрасли и может быть использовано при добыче нефти. Штанговая насосная установка содержит цилиндр 1 с корпусом клапана 2, седлом 3 и упором седла 4 в своей нижней части.

Изобретение относится к штанговым насосам, используемым для поднятия высоковязкой нефти на поверхность. Насос содержит плунжерную камеру в форме полого цилиндра, соединенную в верхней части с колонной насосно-компрессорных труб, внутренний диаметр которых выполнен больше внутреннего диаметра плунжерной камеры.

Изобретение относится к области машиностроения, в частности к поршневым насосам, используемым для нагнетания жидкости с высоким давлением, например, при откачке воды или нефти из глубоких скважин.

Изобретение относится к скважинным штанговым насосам, предназначенным для скважинной добычи нефти с повышенной вязкостью и с высоким содержанием механических примесей.

Изобретение относится к области добычи пластовых жидких сред. Скважинный насос имеет разъемный цилиндр (1), состоящий из полого верхнего цилиндра (2) гидрозащиты с уплотнительным устройством (5) и полого нижнего цилиндра (3) с всасывающим клапаном (25).

Изобретение относится к скважинной добычи нефти с применением вставных штанговых насосов. Запорный элемент всасывающего клапана выполнен в виде полусферы, закрепленной на стержне, подвижно установленном в направляющих втулках.

Изобретение относится к области добычи нефти и, в частности, к насосной системе для добычи нефти с погружным линейным электродвигателем. Технический результат - создание насосной системы с погружным линейным электродвигателем с высоким коэффициентом полезного действия. Насосная система содержит погружной линейный электродвигатель, нефтяной насос, герметизирующее устройство и узел уравновешивания давления, установленные под землей. Погружной линейный электродвигатель содержит статор и приводной механизм. Он имеет возможность возвратно-поступательного перемещения внутри статора. Нефтяной насос содержит цилиндр, плунжер, наружную гильзу и ситочную трубу для подачи нефти. Герметизирующее устройство установлено между погружным линейным электродвигателем и нефтяным насосом. Узел уравновешивания давления установлен на нижнем конце погружного линейного электродвигателя. Он выполнен с возможностью уравновешивания давления внутри и снаружи погружного линейного электродвигателя. Насосная система не включает насосную штангу, как в существующих насосных системах для добычи нефти, что позволяет предотвратить потерю хода, обусловленную длиной насосной штанги, и потерю энергии, обусловленную весом насосной штанги и истиранием штанги с отводом трубы. Благодаря этому обеспечено повышение коэффициента полезного действия системы. 15 з.п. ф-лы, 5 ил.

Изобретение относится к технике нефтепромыслового оборудования и может быть использовано в штанговых глубинных насосах, работающих в вертикальных, наклонных и горизонтальных скважинах. Самоустанавливающийся клапан штангового глубинного насоса содержит корпус, центратор с проходными отверстиями, наклонный лоток с промывочными каналами, седло и шар. На одном конце центральной оси самоустанавливающегося клапана эксцентрично закреплен наклонный лоток, выполненный облегченным. На другом конце в плоскости эксцентриситета наклонного лотка установлен массивный груз, стянутый гайкой и зафиксированный контргайкой. Внутренняя поверхность наклонного лотка выполнена вогнутой с радиусом кривизны больше радиуса шара на величину оптимального зазора между седлом и шаром в открытом состоянии клапана. Вогнутая поверхность наклонного лотка выполнена в виде ложа с продольными полозьями и промывочными каналами между ними. Изобретение направлено на повышение надежности работы клапана в горизонтальных скважинах. 2 ил.

Устройство для подъема воды может быть использовано в гидротранспортных и энергетических системах, а также в водоснабжении. Устройство содержит корпус, тело вытеснителя воды, размещенное в корпусе с возможностью возвратно-поступательного перемещения вдоль оси корпуса за счет механического подъемника сверху. Вытеснение воды потребителю достигается при соотношении диаметров корпуса и погружаемого тела 1,2…1,02. Вес погружаемого тела сосредоточен в его нижней части, а верхняя часть погружаемого тела занимает нейтральное положение в воде. Вес погружаемого тела имеет величину, при которой избыточное давление его на воду превышает гидростатическое давление в корпусе. Устройство позволяет поднимать воду с уменьшенными энергетическими затратами за счет облегченной верхней части погружаемого рабочего тела. 1 ил.

Изобретение относится к нефтедобывающей отрасли и может быть использовано при механизированной добыче нефти. Скважинный штанговый насос с подвижным цилиндром содержит цилиндр 1, жестко связанный с колонной штанг 2, в верхней части которого закреплен клапан нагнетательный 3. Во внутренней полости цилиндра 1 размещена сборка, которая содержит оправку 4 с упором верхнего плунжерного элемента 5, на которой установлен плунжерный элемент 6, подвижный относительно оправки 4. Нижняя часть плунжерного элемента 6 оснащена упрочненной втулкой 7, а нижняя часть оправки 4 оснащена упрочненным опорным седлом 8, которые герметично взаимодействуют при движении колонны штанг с плунжерной сборкой вверх. Нижняя часть оправки 4 при этом жестко связана с неподвижным плунжером 9 посредством клетки-переводника 10. Неподвижный плунжер 9 связан полой штангой 11, длина которого равна длине хода насоса, с устройством удерживающим 12, фиксирующимся в ответной части этого устройства, спускаемом в составе колонны насосных труб 13, при этом нижняя часть цилиндра 1 оснащена упором цилиндра 14, внутренний диаметр которого меньше внешнего диаметра неподвижного плунжера 9. Повышается надежность, упрощаются конструкция и монтаж насоса. 2 ил.

Изобретение относится к области добычи углеводородов, а именно к погружным насосным установкам для эксплуатации скважин в скважинах с негерметичной эксплуатационной колонной либо в скважинах для одновременно-раздельной добычи с большим газовым фактором. Технический результат - повышение эффективности добычи пластового флюида из скважин с негерметичной эксплуатационной колонной. В скважине ниже негерметичного участка эксплуатационной колонны либо над верхним интервалом перфорации устанавливают пакер, либо двухпакерную компоновку. Между электроцентробежным насосом и входным модулем устанавливают секцию мультифазного насоса. Погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжают наружным герметизирующим кожухом, который герметично соединяют с входным модулем электроцентробежного насоса и выполняют с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб с отсекающим пакером ниже насоса. К герметичному кожуху присоединяют хвостовик из насосно-компрессорных труб. Собранную компоновку спускают в скважину до глубины установки верхнего пакера или двухпакерной компоновки. После этого разгрузкой производят герметичную стыковку хвостовика с пакером. Запускают скважину в работу с обеспечением поступления жидкости из-под пакера через хвостовик, внутреннюю полость герметизирующего кожуха, входной модуль и мультифазный насос в электроцентробежный насос. Дополнительно под кожух может быть установлен фильтр от механических примесей. С помощью мультифазного насоса гомогенизируют и частично сжимают газожидкостную смесь, увеличивают рабочий интервал подач и величину предельного содержания газа в газожидкостной смеси а также величину напора, повышает давление на входе электроцентробежного насоса до уровня, обеспечивающего его устойчивую работу. 1 ил.

Изобретение относится к перистальтическим насосам с электромагнитным приводом и предназначено для использования в нефтедобывающей промышленности, в частности, при отборе жидкости из скважины и в других отраслях промышленности и сельского хозяйства. Насос содержит центральные тела внутри эластичных тел. Электромагниты расположены вдоль оси насоса. Якоря электромагнитов связаны с поршнями, находящимися в гидравлических камерах, заполненных жидкостью. Электромагниты разделены на группы, где каждая группа содержит один и более электромагнитов и отдельную гидравлическую камеру для центрального тела с эластичным телом. В каждой группе электромагнитов гидравлические камеры электромагнитов связаны между собой и связаны с гидравлической камерой центрального тела с эластичным телом. Появляется возможность размещения электромагнита и центрального тела с эластичным телом максимально используя диаметр насоса. 6 ил.

Изобретение относится к технике нефтепромыслового оборудования и может быть использовано в штанговых глубинных насосах, работающих в наклонных и горизонтальных скважинах. Самоустанавливающийся нагнетательный клапан штангового глубинного насоса содержит корпус, переводник с проходными отверстиями, массивный груз, установленный в плоскости эксцентриситета наклонного вогнутого лотка, который эксцентрично закреплен на одном конце центральной оси упомянутого клапана, фиксирующие гайку и контргайку, гроверную шайбу, регулировочные гайку и шайбы, рабочий стальной шар, седло и седлодержатель. Упомянутый клапан оснащен уплотнительными резиновыми кольцами Рабочий стальной шар размещен в корзинке, которая расположена в корпусе и имеет продольные промывочные каналы. Последние распределены между внутренними продольными полозьями, имеющими малую контактную поверхность и равномерно расположенными вдоль корпуса по периметру корзинки. Небольшие радиальные зазоры имеются между внутренними продольными полозьями и рабочим стальным шаром, выше которого расположен контактирующий с ним более тяжелый вспомогательный вольфрамовый шар. Изобретение направлено на повышение долговечности и надежности работы клапана в горизонтальных скважинах. 2 ил.

Изобретение относится к области нефтяной промышленности и может быть использовано при добыче высоковязкой нефти из малодебитных горизонтальных скважин штанговыми глубинными насосами. Глубинный насос включает цилиндр, плунжер, самоустанавливающиеся всасывающий и нагнетательный клапаны и шток. Шток выполнен полым и соединен одним концом с плунжером. Другим концом шток соединен с вынесенным из плунжера самоустанавливающимся нагнетательным клапаном и заключен в автономный корпус большего диаметра, размещенным в насосно-компрессорной трубе. Повышается эффективность работы штангового глубинного насоса в малодебитных горизонтальных скважинах с высоковязкой нефтью за счет повышения коэффициента подачи добываемой нефти. 2 ил.

Изобретение относится к области механизированной добычи нефти скважинными штанговыми насосами. Насос содержит цилиндр с всасывающим клапаном. Плунжер установлен в цилиндре с возможностью возвратно-поступательного движения. На наружной поверхности плунжера нанесены замкнутые канавки, поперечный разрез которых имеет форму усеченной наклонной плоскостью параболы, ось симметрии которой образует острый угол с осью плунжера в направлении к выкиду насоса. Глубина канавок не больше одной двадцатой наружного диаметра плунжера. Фильтр механических примесей выполнен в виде концентрично установленных труб. Внутренняя площадь поперечного сечения концентрично установленных труб фильтра больше, чем площадь поперечного сечения между наружным диаметром внутренней трубы и внутренним диаметром наружной концентрично установленной трубы. Прием внутренней трубы снабжен круглым диском, установленным перпендикулярно к оси насоса на кронштейне. Длина наружной трубы выполнена так, что диск оказывается внутри этой трубы. Клапан емкости предварительного накопления мехпримесей снабжен ограничителем хода Г-образной формы. Повышается надежность работы насоса и защита его от мехпримесей, путем применения фильтра со сниженной скоростью восходящего потока жидкости, снижаются утечки в плунжерной паре. 4 ил.

Изобретение относится к отрасли нефтедобывающей промышленности и предназначено для добычи нефти из скважин. Насос содержит полый плунжер с нагнетательным клапаном, цилиндр с всасывающим клапаном в нижней части и кольцевым выступом в средней части. На кольцевом выступе размещены уплотнительные кольца, взаимодействующие с боковой стенкой плунжера. На верхний торец кольцевого выступа цилиндра установлены две оболочки боковой стенки усеченного конуса, сужающегося кверху. Оболочки выполнены с цилиндрическими стенками на внутренних гранях. В цилиндрических стенках обеих оболочек выполнены радиальные прорези, не доходящие до наружной грани оболочек. Лепестки одной оболочки расположены напротив радиальных прорезей другой оболочки. При этом оболочки, в местах между наружной гранью и лепестками, прикреплены друг к другу контактной сваркой. Цилиндрические стенки лепестков обеих оболочек плотно прижимаются к боковой стенке плунжера. Оболочки зафиксированы от перемещения вверх пластинчатым кольцом, имеющим форму конической шайбы. Нижняя коническая стенка пластинчатого кольца прилегает к верхней конической стенке верхней оболочки. Напротив верхней конической стенки пластинчатого кольца в наружной боковой стенке цилиндра выполнены радиальные цилиндрические выборки, со дна каждой из которых выполнена радиальная резьбовая выборка, снабженная установочным винтом, выполненным с цилиндрической головкой и с коническим концом, взаимодействующим с конической стенкой пластинчатого кольца. Упрощается конструкция и повышается КПД. 3 ил.
Наверх