Способ кулонометрического определения содержания воды в лекарственной форме мазь

Изобретение относится к области аналитической химии и касается способа определения содержания воды в лекарственной форме мазь. Сущность способа заключается в том, что проводят растворение навески лекарственной формы мазь в растворителе толуол:метанол в соотношении 7:3, проводят электрогенерацию йода при постоянной силе тока 50мА в фоновом электролите «Аква М®-Кулон AG» в анодной камере, «Аква М®-Кулон СG» в катодной камере на платиновом электроде, далее в ячейку вносят аликвоту раствора эритромицина мази глазной массой 3 г, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле X=I×t×M/F, где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея, 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в мази. Использование способа позволяет с высокой точностью определять содержание воды в лекарственной форме мазь. 2 табл., 1 пр.

 

Изобретение относится к области фармации. Оно может быть использовано для определения содержания воды в лекарственной форме «мазь».

Известен способ определения содержания воды, основанный на волюмометрическом титровании реактивом Фишера в лекарственной форме мазь (см. Фармакопея США [пер. с англ.]. М.: ГЭОТАР-Медиа, 2009. Т. 2. С. 2101-2102; Moisture Measurement by Karl Fischer Titrimetry. 2nd edition // Published by GFS Chemicals, Inc., 2004, C. 27 [http://creschem.com/sites/default/files/KarlFischerMoistureMeasurementBooklet2ndedition.pdf]). Недостатком методики волюмометрического титрования реактивом Фишера является необходимость предварительной стандартизации титранта, большой расход реактива Фишера, длительность и трудоемкость.

Известен способ определения содержания воды в таблеточной массе кулонометрическим титрованием по Фишеру (см. патент на изобретение RU 2488819, МПК G01N 33/15), при этом полного растворения таблеточной массы не требуется. В случае лекарственной формы мазь для корректного определения содержания воды требуется либо полное растворение образца мази, либо полное извлечение действующего вещества из основы, так как зачастую входящие в состав мази действующие или вспомогательные вещества являются еще и кристаллогидратами. Кроме того, отличительные признаки известного изобретения прямо не могут способствовать увеличению достоверности определения воды в лекарственной форме мазь кулонометрическим способом, так как компоненты таблеточной массы и мази, применяемые растворители отличаются по физико-химическим свойствам и возможно протекание химических реакций между компонентами мази, реактивом Фишера и растворителем, т.е. не давать достоверных результатов. За счет того что одним из продуктов побочных реакций может быть вода, протекание химических реакций будет отражаться на достоверности получаемых результатов в лекарственной форме мазь.

Задачей заявленного изобретения является разработка простого, экспрессного и достоверного способа определения воды в лекарственной форме мазь.

Поставленная задача достигается путем определения оптимальных условий пробоподготовки навески из лекарственной формы мазь и кулонометрического титрования, отличающихся тем, что для лекарственной формы мазь определяются соответствующие растворитель, соотношение массы навески испытуемого образца мази и растворителя, массы вводимой пробы, а в основе определения воды в мази лежит взаимодействие воды, содержащейся в испытуемом образце, с кулонометрическим титрантом - электрогенерированным йодом, который образуется при электролизе органического или неорганического иодида (например, CH3I или KI), входящего в состав фонового электролита при постоянной силе тока 50 мА, и легко взаимодействует с водой, содержащейся в испытуемом образце, по реакции Фишера. Содержание воды (X, г) в аликвоте исследуемого образца рассчитывается по формуле:

X=I×t×M/F,

где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; М - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в мази.

Подбор оптимальных условий при пробоподготовке заключается в выборе соотношения массы навески испытуемого образца мази и растворителя, а также массы вводимой пробы, таким образом, чтобы максимально приблизить условия титрования пробы к титрованию стандарта, по которому проверялась пригодность кулонометрической ячейки. В качестве стандарта предлагается использовать HYDRANAL - Check Solution 1.00 с содержанием воды 1,00±0,03 мг Н2О/Г (Fluka, Германия).

Выбор растворителя осуществляется таким образом, чтобы навеска образца была полностью растворима либо достигалось полное извлечение действующего вещества из основы. Для мазевой основы состава вазелин-ланолин нами предлагается использовать смесь растворителей толуол:метанол в соотношении 7:3. Навеска растворяется полностью. Проверялась растворимость данной мазевой основы в метаноле, анолите Аква M®-Кулон AG (ТУ 2638-001-33699038-131-09) и их смеси, основа растворялась не полностью. Мазевая основа состава вазелин-ланолин полностью растворялась в растворителе толуол, но введение пробы в чистом толуоле приводит к нарушению стехиометрии реакции Фишера и изменению ее скорости. В связи с этим использовали смесь растворителей толуол:метанол в соотношении 7:3.

Пример. Определение содержания воды в эритромицина мази глазной.

Навеску эритромицина мази глазной растворяют в смеси растворителей толуол:метанол в соотношении 7:3. Навеска растворяется полностью.

Электрогенерацию йода проводят из коммерчески доступного фонового электролита, состоящего из Аква М®-Кулон AG (ТУ 2638-001-33699038-131-09) в анодной камере и Аква М®-Кулон CG (ТУ 2638-001-33699038-132-09) в катодной камере на платиновом электроде при постоянной силе тока 50 мА - изначально заданная величина.

В кулонометрическую ячейку, содержащую фоновый электролит, помещают рабочий (платиновый), вспомогательный (платиновый), соединенные с гальваностатом, поддерживающим постоянный ток в цепи 50 мА (генераторная цепь) и индикаторные электроды (игольчатые платиновые), соединенные с потенциометром (индикаторная цепь). Включают индикаторную цепь, при этом потенциометр показывает определенное напряжение в цепи (например, 360 мВ). Включают генераторную цепь для удаления влаги из фонового электролита. При этом генерируется йод, появляется обратимая пара и напряжение в индикаторной цепи уменьшается. При достижении определенного значения напряжения в индикаторной цепи (например, 40 мВ) выключают генераторную цепь. Далее в ячейку вносят аликвоту раствора эритромицина мази глазной массой 3 г, при этом значение напряжения в индикаторной цепи увеличивается. Далее включают генераторную цепь и одновременно включают секундомер. При достижении значения напряжения в индикаторной цепи 40 мВ выключают секундомер и генераторную цепь. Снимают показания секундомера - время достижения конечной точки титрования. Содержание воды в аликвоте раствора эритромицина мази глазной (X, г) рассчитывают по формуле:

X=I×t×M/F,

где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; М - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль. Параллельно проводят определение воды в растворителе. Далее по известным формулам рассчитывают содержание воды в эритромицина мази глазной. Определение проводят при комнатной температуре. Правильность определения воды проверяется по стандартному раствору HYDRANAL®-Check Solution 1.00 с содержанием воды (1,00±0,03) мг H2O/г («Riedel-de », Германия), при этом в ячейку вносится 1 г стандартного раствора.

Определение воды в растворе эритромицина мази глазной в смеси растворителей толуол:метанол в соотношении 7:3 проводили на трех уровнях концентрации в диапазоне 70-130% от среднего уровня и на среднем уровне концентрации (табл. 1, 2). Относительное стандартное отклонение не превышает 0,06. Содержание субстанции эритромицина мази глазной в растворе на среднем уровне концентрации подбирали таким образом, чтобы в аликвоте массой 3 г содержался 1 мг воды.

Преимущества данного способа: специфичность, т.к. в основе определения лежит реакция Фишера, по которой титруется только вода; отсутствие необходимости предварительной стандартизации титранта, построения кривых титрования и расчета точки эквивалентности, что сокращает время анализа; предварительное удаление воды из фонового электролита повышает точность анализа, т.к. титруется только вода вносимой аликвоты; малый расход реактива Фишера для кулонометрического титрования, экспрессность и простота проведения эксперимента.

Способ определения содержания воды в лекарственной форме мазь, включающий растворение навески лекарственной формы мазь в растворителе толуол:метанол в соотношении 7:3, затем проводят электрогенерацию йода при постоянной силе тока 50 мА в фоновом электролите «Аква М®-Кулон AG» в анодной камере, «Аква М®-Кулон СG» в катодной камере на платиновом электроде, далее в ячейку вносят аликвоту раствора эритромицина мази глазной массой 3 г, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле X=I×t×M/F, где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея, 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в мази.



 

Похожие патенты:

Изобретение относится к области аналитической химии и касается способа определения содержания воды в субстанции ампициллина тригидрата. Сущность способа заключается в том, что проводят растворение навески указанной субстанции в фоновом электролите «Аква М®-Кулон AG», далее в ячейку вносят аликвоту раствора субстанции ампициллина тригидрата массой 0,5г, проводят электрогенерацию йода при постоянной силе тока 50мА в фоновом электролите «Аква М® -Кулон AG» в анодной камере, «Аква М® -Кулон СG» в катодной камере на платиновом электроде, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле X=I×t×M/Fгде I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в субстанции ампициллина тригидрата.

Способ относится к области химической промышленности и позволяет определить содержание коэнзима Q10 в кремах косметических методом катодной дифференциально-импульсной вольтамперометрии.

Изобретение относится к фармацевтической промышленности и может быть использовано для количественного определения производных дибензазепинов (группы ипраминов) в субстанциях.

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения.

Изобретение относится к аналитической химии и касается способа количественного определения кальция и магния в лекарственном растительном сырье. Сущность способа заключается в том, что проводят озоление сырья в муфельной печи при температуре 500оС, прокаливают до постоянной массы, растворяют полученную золу в 10% растворе соляной кислоты, фильтруют полученный солянокислый раствор золы.

Изобретение относится к области аналитической химии и касается способа количественного определения метоклопрамида в лекарственных формах, воде и биологических жидкостях.

Изобретение относится к косметической промышленности и представляет собой способ оценки косметических средств с целью выявления эффекта приведения рогового слоя во влажное состояние, обеспечивающее достаточное набухание для дестабилизации кератиновой структуры и ламеллярной структуры, а затем высушивания рогового слоя кожи для восстановления кератиновой структуры и ламеллярной структуры, в котором изменение толщины рогового слоя во время увлажнения и последующей сушки рогового слоя используется в качестве индекса и является уровнем изменения толщины рогового слоя, который включает следующие этапы: измерение толщины (А) клеток или клеточного пласта рогового слоя, выбранного из группы, состоящей из рогового слоя кожи, изолированного рогового слоя и культивируемого пласта рогового слоя перед нанесением косметики; измерение толщины (В) клеток или пласта клеток во влажном состоянии; измерение толщины (С) клеток или пласта клеток в сухом состоянии и расчет уровня изменения толщины рогового слоя в процессе увлажнения с последующей сушкой рогового слоя на основе формулы 1: Формула (1) Уровень изменения толщины рогового слоя = (В-А)×100/А-(С-В)×100/С Изобретение обеспечивает способ, позволяющий разработать косметику, способствующую достижению красивой здоровой кожи, на основе полученных знаний.

Изобретение относится к способу измерения количества пищеварительных ферментов, высвобождаемых из твердой композиции в среде растворения, посредством флуоресцентной спектроскопии.

Изобретение относится к области фармацевтики, в частности к способам количественного анализа лекарственных средств. Способ касается определения рифабутина в образце с неизвестным содержанием рифабутина и, необязательно, других компонентов (анализируемом образце), в котором используют: (а) прибор для проведения капиллярного зонного электрофореза, оснащенный термостатируемой камерой для капилляра, капилляром, оптическим детектором, средствами записи результатов измерений, средствами ввода образца; (б) электролит; в котором капилляр заполняют электролитом (б), вводят анализируемый образец в капилляр с помощью средств ввода образца, измеряют и записывают электрофореграмму (величину или изменение поглощения в зависимости от времени осуществления электрофореза) посредством оптического детектора, характеризующийся тем, что в нем содержание рифабутина и, необязательно, других компонентов в анализируемом образце определяют по зависимости площади пиков рифабутина и, необязательно, других компонентов на электрофореграммах, полученных в тех же условиях, с применением растворов с заранее известными концентрациями рифабутина и, необязательно, других компонентов в качестве анализируемых образцов.

Изобретение относится к области аналитической химии и касается способа определения лекарственных средств производных инандиона-1,3 в порошках фениндион, омефин, метиндион.

Изобретение относится к фармацевтической промышленности, а именно к фармацевтическому анализу, и может быть использовано для количественного определения хлорпротиксена гидрохлорида, зуклопентиксола и флупентиксола в субстанциях. Точные навески порошков хлорпротиксена гидрохлорида 0,010 г, зуклопентиксола 0,025 г и флупентиксола 0,005 г помещают в мерные колбы емкостью 50 мл, растворяют сначала в 15-20 мл 0,1 н. КОН, выдерживают при комнатной температуре до полного растворения, а затем доводят тем же раствором КОН до метки объемы колб, затем в мерные колбы емкостью 20 мл точно отмеривают 3,0 4,0, 5,0, 6,0, 7,0 мл приготовленных растворов зуклопентиксола и флупентиксола, 3,0, 3,5, 4,0, 4,5, 5,0 мл раствора хлорпротиксена, последовательно прибавляют 0,5 мл 5%-ного раствора натрия сульфита, 1,5 мл 0,1 M раствора КОН, встряхивают при комнатной температуре в течение 5 мин, затем вносят 0,5 мл 3%-ного щелочного раствора натрия нитропруссида, 1 мл 0,1 M раствора КОН и 1,0 мл аммиачного буферного раствора с рН 10, выдерживают еще 1 мин, появляется ярко-красное окрашивание, устойчивое в течение 2 ч, доводят объемы растворов до метки буферным раствором и измеряют оптическую плотность поглощения окрашенных растворов с помощью фотоэлектроколориметра при длине волны 490 нм и толщине поглощающего слоя 10 мм. 4 ил., 2 пр.

Изобретение относится к исследованию или анализу материалов с использованием хроматографии. Способ одновременного определения примесей этилендиаминтетрауксусной кислоты (ЭДТА), диметилсульфоксида (ДМСО) и N-этилмалеимида (ЭТМ) в фармацевтических субстанциях методом обращенно-фазовой высокоэффективной жидкостной хроматографии включает определение ЭДТА, ДМСО и ЭТМ во время одного анализа, с использованием хроматографической колонки длиной не более 150 мм, заполненной носителем с зернением не более 5 мкм, используя раствор кислоты ортофосфорной 10-30 мМ (рН 1,9-2,26) с градиентом органического растворителя от 0 до 100%, при температуре колонки 25-45°С, достигается предел детектирования для ЭДТА - от 4,14 до 8,0 нг, ДМСО - от 0,8 до 3,0 нг, ЭТМ - 0,04 до 1 нг и предел количественного определения ЭДТА - от 12,9 до 30 нг, ДМСО - от 2,66 до 10 нг, ЭТМ - от 0,13 до 3 нг. 30 ил., 11 табл., 6 пр.

Изобретение относится к области аналитической химии и касается способа определения феназепама. Сущность способа заключается в том, что готовят растворы определяемого вещества в концентрации 0,02 мг/мл и образца сравнения. В качестве растворителя для приготовления испытуемых растворов используют 0,1М раствор натрия гидроксида. В качестве образца сравнения используют натрия нитрат. Измеряют оптическую плотность раствора определяемого вещества и образца сравнения на спектрофотометре при длине волны 345 нм. Расчет результатов проводят по формуле ,где Dx и Dвос - оптические плотности определяемого вещества и образца сравнения соответственно; аx и авос - точные навески определяемого вещества и образца сравнения соответственно; V1 и V2 -объемы приготовленного раствора определяемого вещества; V3 - объем аликвоты определяемого вещества; - объем приготовленного раствора образца сравнения; 100 - коэффициент для пересчета в проценты; W - влажность, %; 0,0208 - коэффициент пересчета по натрия нитрату в 0,1M растворе натрия гидроксида. Использование способа позволяет с высокой точностью определять феназепам в исследуемых образцах. 3 пр.

Изобретение относится к области фармации и может быть использовано для определения фазы цветения лекарственного сырья, в частности горца птичьего, горца перечного и горца почечуйного. Способ определения фазы вегетации лекарственного растительного сырья горца птичьего, горца перечного и горца почечуйного по малатдегидрогеназе с помощью электрофореза в полиакриламидном геле содержит сбор лекарственного сырья, определение молекулярных форм малатдегидрогеназа (МФ МДГ) электрофоретическим методом с использованием полиакриламидного геля, расчет относительной электрофоретической подвижности (ОЭП) обнаруженных форм МДГ для лекарственного растительного сырья горца птичьего, горца перечного и горца почечуйного на следующих фазах вегетации: бутонизация, цветение, плодоношение, определение фазы вегетации горцев по физиологическим маркерам – молекулярным формам фермента малатдегидрогеназы, при этом фазу цветения растений определяют следующим образом: для горца птичьего – если обнаруживается одна МФ МДГ 1 с ОЭП 0,50±0,02, для горца перечного - если обнаруживается только МДГ 1 с ОЭП 0,60±0,02, для горца почечуйного - если обнаруживается только МДГ 1 с ОЭП 0,76±0,02. 1 табл.

Изобретение относится к фармации, фармакологии и клинической фармакологии и касается способа модельно-дискриминационной оценки фармацевтической эквивалентности лекарственных средств, покрытых кишечнорастворимой оболочкой, включающего определение кинетики растворения изучаемых препаратов и препарата сравнения путем последовательного помещения по одной единице твердой дозированной формы в фосфатный буфер объемом 500 мл с рН 1,05±0,05 и при температуре 37±0,05°С, перемешивания с помощью лопастной мешалки со скоростью 100 об/мин, отбора аликвоты через 2 часа и ее фильтрации, определения в аликвоте действующего вещества, переноса лекарственной формы в фосфатный буфер с рН 7,0±0,05, перемешивания с помощью лопастной мешалки со скоростью 100 об/мин, отбора аликвот через 10, 15, 20, 30, 45, 60 минут и в дополнительное расчетное время объемом 5 мл с восполнением этого объема средой растворения; аликвоты фильтруют, прибавляют к 2 мл фильтрата аликвот по 400 мкл 0,25 моль/л натрия гидроксида, определяют количество действующего вещества, перешедшего в раствор, параллельно проводят второй этап сравнительного теста кинетики растворения, включающий последовательное помещение по одной единице твердой дозированной формы в среду растворения с рН 4,0±0,05 объемом 500 мл, перемешивание с помощью лопастной мешалки со скоростью 100 об/мин, отбор проб через 10, 15, 20, 30, 45, 60 минут объемом 5 мл с восполнением этого объема средой растворения, фильтрацию аликвот, прибавление к 2 мл фильтрата аликвот по 400 мкл 0,25 моль/л натрия гидроксида, определение количества действующего вещества, перешедшего в раствор, с рН 7,0±0,05, объемом 900 мл, перемешивание с помощью лопастной мешалки со скоростью 100 об/мин, отбор проб через 10, 15, 20, 30, 45, 60 минут, при этом дополнительно определяют точку отбора аликвоты из среды растворения с рН 7,0±0,05 по формуле Тр=(Тк×0,121)+t(1). Изобретение обеспечивает повышение точности определения фармацевтической эквивалентности воспроизведенных лекарственных средств, защищенных кишечнорастворимыми оболочками. 5 ил., 2 табл.

Изобретение относится к медицине, в частности к лабораторным методам исследования, позволяющим осуществлять эффективный скрининг антиоксидантов. Способ экспресс-скрининга потенциальных антиоксидантов заключается в том, что выделяют липопротеиды низкой плотности (ЛНП) из плазмы венозной крови здоровых доноров, осуществляют окисление липопротеидов низкой плотности при температуре 37°С внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) и по результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность периода индукции (τ), затем в опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ, и если продолжительность периода индукции исследуемого вещества выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта; если ниже 0,1 - исследованное вещество эффективным антиоксидантом не является. 3 пр., 2 ил., 1 табл.

Изобретение относится к медицине для определения концентрации в биосистемах (сыворотке крови, слюне и др.) и может быть использовано для количественного определения биоцидного гидразида изоникотиновой кислоты (изониазида) в водных растворах этого соединения при токсикологическом и техническом анализе субстанции и лекарственных форм этого препарата. Для этого сорбенты (силикагель или оксид алюминия) предварительно обрабатывают водным раствором соли меди и высушивают. Затем анализируемую пробу водного раствора наносят на сорбент и после развития окраски регистрируют параметр окраски. Регистрацию оптического сигнала осуществляют при сканировании поверхности сорбента с помощью оптического сканера по каналам цветности RGB с получением графического изображения. Концентрацию изониазида определяют по интенсивности отклика сигнала по цветовому каналу В с использованием графического редактора. Изобретение обеспечивает регулирование введения оптимальных доз лекарств при лечении активных форм туберкулеза, а также при исследовании фармакокинетики лекарственного препарата. 2 табл., 8 пр.
Изобретение относится к медицине, а именно к фармакологии, фармации, дерматологии, косметологии и судебной медицине, и может быть использовано при разработке новых лекарственных средств, предназначено для поиска и оценки эффективности средств, обесцвечивающих кожу в области «красных» и «синих», свежих и старых кровоподтеков, при разработке косметических технологий, предназначенных для удаления кровоподтеков, а также при судебной медицинской экспертизе давности кровоподтеков и ушибов мягких тканей. Способ скрининга отбеливателей кровоподтеков проводят в лабораторных условиях при температуре +24-+26°С, используя изолированный сегмент передней брюшной стенки свиньи, в качестве пигмента используют свиную венозную кровь, насыщенную и ненасыщенную кислородом, которую вводят внутритканно по 0,5 мл в переднюю брюшную стенку свиньи, с помощью непрерывной цветной киносъемки фиксируют момент введения и момент достижения полного обесцвечивания кожи в области каждого кровоподтека после введения испытуемого средства. Способ обеспечивает срочное исследование в лабораторных условиях отбеливающей активности нескольких средств одновременно. 1 пр.

Изобретение относится к области биотехнологии, в частности к способу биотестирования активности противопаразитарных субстанций и препаратов, содержащих в качестве активного вещества авермектины и их производные, с помощью олигохет вида Tubifex tubifex. Сущность способа заключается в том, что готовятся разведения авермектинов (0,5 до 50 мкг/мл), в которые вносятся олигохеты по 15-20 особей и инкубируют в течение 1-2 ч при температуре 27-30°С. Далее оценивают биоцидное действие авермектинов по поведенческой реакции олигохет, причем об активности препарата судят по отсутствию сползания тест-объектов в клубок в результате различной степени паралича. Достигаемый технический результат заключается в стандартизации, повышении чувствительности и экспрессности способа биотестирования активности авермектинсодержащих субстанций и препаратов с использованием поведенческой реакции олигохет вида Tubifex tubifex, основанной на их нейрохимических особенностях метаболизма. Преимущества способа заключаются в низкой трудоемкости и стоимости, быстроте анализа, доступности, высокой чувствительности (до 1,0 мкг/мл). 2 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к области микробиологии, а именно к способу определения контаминации растворов и биологических жидкостей. Сущность способа состоит в том, что детектируют биологические объекты, включающие микроорганизмы или вирусы, с помощью наночастиц металлов, формирующихся in situ из внесенных в исследуемый объект солей соответствующих металлов, при последующем анализе динамики спектральных характеристик формирующихся наночастиц. В присутствии клеток микроорганизмов в течение 20-40 минут размер формирующихся наночастиц металлов достигает величины более 15 нм, в присутствии вирусов размер формирующихся наночастиц достигает 6 нм, тогда как в отсутствие контаминации исследуемых объектов за то же время размер образующихся зародышей наночастиц не превышает 2 нм. Использование заявленного способа позволяет с высокой чувствительностью, достоверностью, технической простотой и быстротой выявлять случаи микробной контаминации растворов и биологических жидкостей. 4 ил., 3 пр.

Изобретение относится к области аналитической химии и касается способа определения содержания воды в лекарственной форме мазь. Сущность способа заключается в том, что проводят растворение навески лекарственной формы мазь в растворителе толуол:метанол в соотношении 7:3, проводят электрогенерацию йода при постоянной силе тока 50мА в фоновом электролите «Аква М®-Кулон AG» в анодной камере, «Аква М®-Кулон СG» в катодной камере на платиновом электроде, далее в ячейку вносят аликвоту раствора эритромицина мази глазной массой 3 г, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле XI×t×MF, где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 гмоль; F - постоянная Фарадея, 96485 Клмоль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в мази. Использование способа позволяет с высокой точностью определять содержание воды в лекарственной форме мазь. 2 табл., 1 пр.

Наверх