Способ контроля прочности керамических оболочек типа тел вращения



Способ контроля прочности керамических оболочек типа тел вращения
Способ контроля прочности керамических оболочек типа тел вращения

 


Владельцы патента RU 2614920:

Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" (RU)

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и соединенной с источником давления. Статическую нагрузку прикладывают к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, напряженный объем материала которой определяют с использованием уравнений общей теории оболочек вращения или приближенными численными методами. Определяют среднее значение прочности материала оболочки при растяжении в напряженном объеме материала оболочки и величину прикладываемого давления рассчитывают по формулам. Технический результат: повышение достоверности контроля прочности керамических оболочек в процессе производства и при проведении опытно-конструкторских работ.

 

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения.

Известен способ испытания оболочечных конструкций, в частности металлических труб, на прочность и герметичность, предусматривающий гидростатическое нагружение их внутренним давлением, причем величина пробного давления определяется в зависимости от диаметра и толщины стенки трубы (ГОСТ 3847-75. Трубы металлические. Методы испытания гидравлическим давлением). Известен способ испытаний механической прочности цилиндрических оболочек, нагруженных внешним давлением, в котором равномерное распределение нагрузки по всей внешней поверхности испытуемой конструкции достигается тем, что нагружение осуществляют с помощью камеры из эластичного материала, имеющей торовое сечение (А.с. СССР №324538, МКИ G01М 19/00, БИ №2, 1972). Наиболее близким по технической сущности к заявленному решению является способ испытания оболочек, включающий приложение статической нагрузки, равномерно распределенной по поверхности испытуемой оболочки с помощью камеры из эластичного материала, имеющей торовое сечение и соединенной с источником давления. Указанную камеру помещают внутрь испытуемой оболочки и наполняют рабочим веществом до получения требуемой величины статической нагрузки (Патент RU 2242739, МПК G01N 3/12, публикация патента: 20.12.2004, Способ испытания оболочек и устройство для его осуществления (прототип)).

Однако эти способы не обеспечивают соответствия условий испытания характеру и величине задаваемых нагрузок при контроле прочности оболочек из керамики: хрупкого материала, на прочность которого существенное влияние оказывает масштабный фактор, и, следовательно, вносят определенную ошибку при оценке несущей способности оболочек.

Задачей заявляемого изобретения является повышение достоверности контроля прочности керамических оболочек в процессе производства и при проведении опытно-конструкторских работ за счет использования обоснованного расчетного метода для установления уровня прикладываемого давления, учитывающего свойства керамики и условия нагружения.

Поставленная задача достигается тем, что в способе контроля прочности керамических оболочек типа тел вращения давлением, включающем приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и соединенной с источником давления, отличающимся тем, что статическую нагрузку прикладывают к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, напряженный объем материала которой определяют с использованием уравнений общей теории оболочек вращения или приближенными численными методами, определяют среднее значение прочности материала оболочки при растяжении в напряженном объеме материала оболочки

,

где - среднее значение прочности образцов материала оболочки, испытанных при трехточечном изгибе; Vu - рабочий объем образца материала оболочки; - напряженный объем материала оболочки; m - модуль Вейбулла, а величину прикладываемого давления рассчитывают по формуле:

,

где r - радиус нейтрального сечения напряженного объема материала оболочки; h - толщина стенки оболочки в напряженной зоне.

Сравнение заявляемого способа с прототипом показывает, что способ отличается от известного тем, что:

- статическую нагрузку прикладывают к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, в которой определяют напряженный объем материала оболочки;

- среднее значение прочности материала оболочки при растяжении в напряженном объеме материала оболочки определяют с учетом масштабного фактора и свойств материала, что соответствует достоверным значениям этой важнейшей для керамических деталей характеристики;

- прикладываемое давление обеспечивает статическую нагрузку, необходимую для достоверности контроля прочности керамических оболочек.

При изучении других технических решений в данной области техники установлено, что данные признаки ранее не встречались, таким образом, вся совокупность признаков заявляемого способа является новой, и он соответствует критерию изобретения "новизна". Именно наличие вышеназванных отличительных признаков обеспечивает достижение указанного технического результата изобретения - повышение достоверности контроля прочности керамических оболочек типа тел вращения, в результате чего повышается точность оценки их несущей способности. Таким образом, заявляемое техническое решение - способ соответствует критерию изобретения «изобретательский уровень».

Предлагаемый способ может найти применение в процессе производства и при проведении опытно-конструкторских работ для контроля прочности керамических оболочек.

Способ контроля прочности керамических оболочек типа тел вращения давлением, включающий приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и соединенной с источником давления, отличающийся тем, что статическую нагрузку прикладывают к наиболее напряженной зоне оболочки, определяемой заданными условиями нагружения, напряженный объем материала которой определяют с использованием уравнений общей теории оболочек вращения или приближенными численными методами, определяют среднее значение прочности материала оболочки при растяжении в напряженном объеме материала оболочки

где - среднее значение прочности образцов материала оболочки, испытанных при трехточечном изгибе; Vu - рабочий объем образца материала оболочки; - напряженный объем материала оболочки; m - модуль Вейбулла, а величину прикладываемого давления рассчитывают по формуле:

где r - радиус нейтрального сечения напряженного объема материала оболочки; h - толщина стенки оболочки в напряженной зоне.



 

Похожие патенты:

Изобретение относится к строительству, механике грунтов, инженерной геологии, горному делу, в частности к лабораторным испытаниям грунтов для определения их физико-механических свойств.

Изобретение относится к испытанию керамических обтекателей летательных аппаратов на разрушение. Способ включает создание избыточного давления во внутренней полости обтекателя.

Изобретение относится к «Физике материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта двух материальных сред.

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве.

Изобретение относится к компактному зажимному устройству (50) для трубы, пригодному для использования в установке для гидравлических испытаний под давлением с целью контроля качества трубы, полученной электросваркой методом сопротивления.

Изобретение относится к «физике материального взаимодействия», конкретно к способу определения модуля Eо общей деформации и модуля Eупр упругости материальной среды в условиях гравитационного взаимодействия pб и влияния атмосферного давления .

Изобретение относится к способам определения прочности сцепления волокон в одноосноориентированных волокнистых композитных материалах, применяемых в строительных конструкциях и изделиях.

Использование: для тестирования истинной прочности или жесткости твердых или сверхтвердых компонентов, используя акустическую эмиссию. Сущность изобретения заключается в том, что устройство тестирования на основе акустической эмиссии содержит тестируемый образец, включающий твердую поверхность, акустический датчик, индентор, соединенный с твердой поверхностью, и нагрузку.

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во время работы насоса, и может быть использовано для оценки их работоспособности.

Изобретение относится к области неразрушающего контроля и может быть использовано в строительной отрасли. Предлагаемый способ заключается в том, что предварительно выявляют место наибольшей осадки фундамента здания.

Изобретение относится к области физики материального контактного взаимодействия, а именно к способам определения удельного сцепления и угла внутреннего трения материальной связной среды, воспринимающей давление свыше гравитационного.Способ 1 определения физических параметров прочности материальной среды плоским жестким штампом заключается в установлении при лабораторном сдвиге образцов, например, грунта и торфа ненарушенной структуры в условиях компрессии угла внутреннего трения и удельного сцепления С=Сстр среды при построении графика Кулона-Мора предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, определении расчетного удельного веса среды ненарушенной и нарушенной структуры и , ее расчетного угла внутреннего трения с нарушенной структурой , расчетного бытового давления , на глубине h, определении уточненного значения:1) удельного сцепления подтопленной среды , , гравитационного давления , , удельного веса при , рб>0 и отсутствии атмосферного давления;2) удельного сцепления среды при уточненных значениях , , , - при , рб=0 и доступе атмосферного давления ратм=1,033 (кГ/см2);3) удельного сцепления среды , и уточняют значения: удельного веса среды , и уточняют значения удельного веса среды , и гравитационного давления , , рб.<0 и доступе атмосферного давления ратм=1,033 (кГ/см2).Способ 2 определения физических параметров прочности материальной среды сферическим штампом включает нагружение сухой среды усилием Р диаметром D с замером текущей осадки St до момента ее стабилизации во времени t, разгрузку сферы, определение ее контактной осадки So и по результатам испытаний - длительного сцепления Сдл, сферу в среду погружают не менее трех раз через динамометрический упругий элемент на заданную глубину St1<St2<Stk, величину которых поддерживают постоянной во времени t стабилизации соответствующих усилий P1, P2, Pk, после чего сферу разгружают с замером диаметра отпечатка диаметром dk. Далее рассчитывают осадки сферы при давлениях рср=Pk/[πSo(D-So)], строят график и касательные прямые к точкам графика, соответствующим усилиям P1, P2, Pk до пересечения с осью абсцисс; радиусами ρ, равными разнице значений рср и соответствующих им точек пересечения касательных с осью абсцисс, строят круги Мора и проводят к ним касательную прямую (maxτпр)=рср.⋅tgθ+Сэ до пересечения с осями абсцисс и ординат, с графика снимают предельный угол θ внутреннего трения грунта и отмеряют мгновенное эквивалентное сцепление Сэ, рассчитывают угол внутреннего трения среды в структурированном состоянии и удельное сцепление , радиусом Ro от начала координат графика проводят полуокружность, соприкасающуюся с ним и отсекающую на оси абсцисс точку, соответствующую предельному напряжению на растяжение σp=2Ro=2Сэ⋅cosθ/(1+sinθ), значению которого соответствует длительное сцепление .Далее через сферу к среде прикладывают возрастающее усилие Рс>Pk до момента стабилизации его предельной величины Pc=const при регистрации соответствующей ему осадки Sc среды, при которой угол сектора полуконтакта сферы со средой , где , и определяют величину длительного сцепления для мерзлой среды - как , для обычной грунтовой среды - как ,для торфяной среды - как: при сцеплении , а угол внутреннего трения среды уточняют как .За мгновенное эквивалентное сцепление грунтовой среды и торфа принимают величину атмосферного давления при предельном угле внутреннего трения среды , где - угол внутреннего трения среды с нарушенной структурой, удельное сцепление структурированной грунтовой среды и торфа определяют как , а величину длительного сцепления - по выражению при , для мерзлой и обычной грунтовой среды и торфа структурное сцепление определяют как , а эквивалентное сцепление как .Технический результат - получение при угле внутреннего трения достоверных значений параметров удельного сцепления материальной среды в сухом и обводненном состоянии в структурированном и нарушенном состоянии, уточняющих величину гравитационного давления среды рстр.б., рн.б. и ее удельного веса , . 2 н. и 2 з.п. ф-лы, 6 ил.
Наверх