Биполярно-полевой мультидифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня. Для этого предложен биполярно-полевой мультидифференциальный операционный усилитель, который содержит первый (1) входной биполярный транзистор, первый (2) вход устройства, первый (3) входной полевой транзистор с управляющим р-n переходом, второй (4) вход устройства, второй (5) входной биполярный транзистор, третий (6) вход устройства, второй (7) входной полевой транзистор с управляющим р-n переходом, четвертый (8) вход устройства, токовое зеркало (9), первую (10) шину источника питания, буферный усилитель (11), вторую (12) шину источника питания, первый (13) и второй (14) дополнительные резисторы, первый (15), второй (16) и третий (17) дополнительные биполярные транзисторы, первый (18) дополнительный токостабилизирующий двухполюсник, четвертый (19), пятый (20) и шестой (21) дополнительные биполярные транзисторы, второй (22) дополнительный токостабилизирующий двухполюсник. 1 з.п. ф-лы, 9 ил.

 

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов.

В современной микроэлектронике находят применение так называемые мультидифференциальные операционные усилители (МОУ), обладающие (в сравнении с классическими ОУ) рядом неоспоримых преимуществ по схемам включения и их параметрам [1-17]. Сегодня МОУ реализуются на биполярных [1, 2] и полевых транзисторах [3-12], а также в виде гибридных схемотехнических решений, содержащих биполярные и полевые транзисторы с управляющим р-n переходом [13-16]. Последний подкласс МОУ при его реализации на основе технологии ОАО «Интеграл» (г. Минск) [17] отличается высокой радиационной стойкостью и, в этой связи, относится к достаточно перспективной элементной базе.

Однако для получения в таких МОУ повышенных коэффициентов усиления по напряжению при ограничениях на число основных каскадов (не больше двух) необходима специальная схемотехника, учитывающая ограничения биполярно-полевой технологии [17], которая обеспечивает радиационную стойкость микроэлектронных изделий до 1 Мрад и выдерживает поток нейтронов до 1013 н./см2.

Ближайшим прототипом заявляемого устройства является МОУ по патенту RU 2523124, фиг. 3. Он содержит (фиг. 1) первый 1 входной биполярный транзистор, база которого соединена с первым 2 входом устройства, эмиттер первого 1 входного биполярного транзистора связан с истоком первого 3 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен со вторым 4 входом устройства, второй 5 входной биполярный транзистор, база которого соединена с третьим 6 входом устройства, эмиттер второго 5 входного биполярного транзистора связан с истоком второго 7 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен с четвертым 8 входом устройства, токовое зеркало 9, согласованное с первой 10 шиной источника питания, выход которого подключен ко входу буферного усилителя 11, вторую 12 шину источника питания.

Существенный недостаток известного МОУ состоит в том, что из-за применения входных полевых транзисторов, которые характеризуются малой крутизной, в нем не обеспечиваются высокие значения коэффициента усиления по напряжению. Таким образом, МОУ-прототип с двухкаскадной архитектурой имеет ограниченные области использования.

Основная задача предлагаемого изобретения состоит в повышении коэффициента усиления по напряжению разомкнутого МОУ при сохранении высокой стабильности нулевого уровня (малых напряжениях смещения нуля).

Поставленная задача достигается тем, что в биполярно-полевом мультидифференциальном операционном усилителе фиг. 1, содержащем первый 1 входной биполярный транзистор, база которого соединена с первым 2 входом устройства, эмиттер первого 1 входного биполярного транзистора связан с истоком первого 3 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен со вторым 4 входом устройства, второй 5 входной биполярный транзистор, база которого соединена с третьим 6 входом устройства, эмиттер второго 5 входного биполярного транзистора связан с истоком второго 7 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен с четвертым 8 входом устройства, токовое зеркало 9, согласованное с первой 10 шиной источника питания, выход которого подключен ко входу буферного усилителя 11, вторую 12 шину источника питания, предусмотрены новые элементы и связи - эмиттер первого 1 входного биполярного транзистора связан с истоком первого 3 входного полевого транзистора с управляющим р-n переходом через первый 13 дополнительный резистор, эмиттер второго 5 входного биполярного транзистора связан с истоком второго 7 входного полевого транзистора с управляющим р-n переходом через второй 14 дополнительный резистор, коллекторы первого 1 и второго 5 входных биполярных транзисторов связаны с первой 10 шиной источника питания, сток первого 3 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами первого 15, второго 16 и третьего 17 дополнительных биполярных транзисторов, эмиттеры которых соединены со второй 12 шиной источника питания, причем между стоком первого 3 входного полевого транзистора с управляющим р-n переходом и второй 12 шиной источника питания включен первый 18 дополнительный токостабилизирующий двухполюсник, сток второго 7 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами четвертого 19, пятого 20 и шестого 21 дополнительных биполярных транзисторов, эмиттеры которых соединены со второй 12 шиной источника питания, причем между стоком второго 7 входного полевого транзистора с управляющим р-n переходом и второй 12 шиной источника питания включен второй 22 дополнительный токостабилизирующий двухполюсник, коллекторы второго 16 и пятого 20 дополнительных биполярных транзисторов подключены к истоку первого 3 входного полевого транзистора с управляющим р-n переходом, коллекторы третьего 17 и шестого 21 дополнительных биполярных транзисторов подключены к истоку второго 7 входного полевого транзистора с управляющим р-n переходом, коллектор первого 15 дополнительного биполярного транзистора соединен со входом токового зеркала 9, а коллектор четвертого 19 дополнительного биполярного транзистора связан с выходом токового зеркала 9.

На чертеже фиг. 1 показана схема МОУ-прототипа, а на чертеже фиг. 2 - схема заявляемого устройства в соответствии с п. 1 формулы изобретения.

На чертеже фиг. 3 приведена схема заявляемого устройства в соответствии п. 2 формулы изобретения.

На чертеже фиг. 4 приведена схема заявляемого устройства фиг. 2 в среде PSpice на радиационно-зависимых моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г. Минск).

На чертеже фиг. 5 показаны амплитудно-частотные характеристики коэффициента усиления по напряжению операционного усилителя фиг. 4 без отрицательной обратной связи (верхний график) и с отрицательной обратной связью (нижний график).

На чертеже фиг. 6 приведена зависимость систематической составляющей напряжения смещения нуля схемы фиг. 4 при воздействии температуры и потока нейтронов.

На чертеже фиг. 7 приведена схема заявляемого устройства фиг. 3 в среде PSpice на радиационно-зависимых моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г. Минск) для случая его неинвертирующего включения в схеме со 100% отрицательной обратной связью, которая вводится на базу транзистора Q2. При этом для уменьшения выходного сопротивления в схеме предусмотрен буферный усилитель (Gain=1). В схеме также используется традиционная цепь коррекции АЧХ (конденсатор С1).

На чертеже фиг. 8 показаны амплитудно-частотные характеристики операционного усилителя фиг. 7 без отрицательной обратной связи и с отрицательной обратной связью (ООС).

На чертеже фиг. 9 приведена зависимость систематической составляющей напряжения смещения нуля схемы фиг. 7 при воздействии температуры и потока нейтронов при отсутствии разброса параметров элементов, а также идеальных токовом зеркале 9 и буферном усилителе 11.

Биполярно-полевой мультидифференциальный операционный усилитель фиг. 2 содержит первый 1 входной биполярный транзистор, база которого соединена с первым 2 входом устройства, эмиттер первого 1 входного биполярного транзистора связан с истоком первого 3 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен со вторым 4 входом устройства, второй 5 входной биполярный транзистор, база которого соединена с третьим 6 входом устройства, эмиттер второго 5 входного биполярного транзистора связан с истоком второго 7 входного полевого транзистора с управляющим р-n переходом, затвор которого соединен с четвертым 8 входом устройства, токовое зеркало 9, согласованное с первой 10 шиной источника питания, выход которого подключен ко входу буферного усилителя 11, вторую 12 шину источника питания. При этом эмиттер первого 1 входного биполярного транзистора связан с истоком первого 3 входного полевого транзистора с управляющим р-n переходом через первый 13 дополнительный резистор, эмиттер второго 5 входного биполярного транзистора связан с истоком второго 7 входного полевого транзистора с управляющим р-n переходом через второй 14 дополнительный резистор, коллекторы первого 1 и второго 5 входных биполярных транзисторов связаны с первой 10 шиной источника питания, сток первого 3 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами первого 15, второго 16 и третьего 17 дополнительных биполярных транзисторов, эмиттеры которых соединены со второй 12 шиной источника питания, причем между стоком первого 3 входного полевого транзистора с управляющим р-n переходом и второй 12 шиной источника питания включен первый 18 дополнительный токостабилизирующий двухполюсник, сток второго 7 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами четвертого 19, пятого 20 и шестого 21 дополнительных биполярных транзисторов, эмиттеры которых соединены со второй 12 шиной источника питания, причем между стоком второго 7 входного полевого транзистора с управляющим р-n переходом и второй 12 шиной источника питания включен второй 22 дополнительный токостабилизирующий двухполюсник, коллекторы второго 16 и пятого 20 дополнительных биполярных транзисторов подключены к истоку первого 3 входного полевого транзистора с управляющим р-n переходом, коллекторы третьего 17 и шестого 21 дополнительных биполярных транзисторов подключены к истоку второго 7 входного полевого транзистора с управляющим р-n переходом, коллектор первого 15 дополнительного биполярного транзистора соединен со входом токового зеркала 9, а коллектор четвертого 19 дополнительного биполярного транзистора связан с выходом токового зеркала 9.

Для уменьшения влияния напряжения Эрли первого 15 и четвертого 19 дополнительных биполярных транзисторов на напряжение смещения нуля Uсм МОУ в схему фиг. 2 вводится цепь смещения статического уровня 23, выполненная, например, на основе стабилитрона, резисторов или каких-либо источников опорного напряжения.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, сток первого 3 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами первого 15, второго 16 и третьего 17 дополнительных биполярных транзисторов через эмиттерно-базовый переход первого 23 вспомогательного транзистора, коллектор которого соединен с первой 10 шиной источника питания, а эмиттер соединен со второй 12 шиной источника питания через первый 24 вспомогательный резистор, сток второго 7 входного полевого транзистора с управляющим р-n переходом связан с объединенными базами четвертого 19, пятого 20 и шестого 21 дополнительных биполярных транзисторов через эмиттерно-базовый переход второго 25 вспомогательного транзистора, коллектор которого связан с первой 10 шиной источника питания, а эмиттер соединен со второй 12 шиной источника питания через второй 26 вспомогательный резистор. Кроме этого, в схеме фиг. 3 предусмотрена традиционная цепь коррекции амплитудно-частотной характеристики 27 в виде корректирующего конденсатора Ск.

Рассмотрим работу МОУ фиг. 2 в статическом режиме для случая, когда все входы МОУ связаны с общей шиной. В этом включении МОУ эмиттерные токи первого 1 и второго 5 входных биполярных транзисторов зависят от сопротивлений первого 13 и второго 14 дополнительных резисторов, определяются геометрией первого 3 и второго 7 входных полевых транзисторов и зависят от величины их тока истока Iси=I0. Для входной цепи МОУ можно записать следующее уравнение Кирхгофа:

где Uэб.1≈0,7В - статическое напряжение эмиттер-база транзистора 1;

- заданный уровень статического тока коллектора первого 15 и четвертого 19 дополнительных биполярных транзисторов;

I0 - ток первого 18 и второго 22 дополнительных токостабилизирующих двухполюсников;

- напряжение затвор-исток первого 3 полевого транзистора с управляющим р-n переходом при токе стока, равном Iсз=I0.

В уравнении (1) известными величинами являются Uэб.1≈0,7В, а также напряжение Uзи.3 при заданном токе I0, которое определяется по стоко-затворной характеристике первого 3 (второго 7) входного полевого транзистора с управляющим р-n переходом.

Таким образом, задаваясь величиной статического тока первого 15 и четвертого 19 дополнительных биполярных транзисторов, из уравнения (1) можно найти необходимую величину сопротивлений первого 13 (второго 14) дополнительного резистора, при котором в схеме МОУ фиг. 2 устанавливается необходимый статический режим.

Для дифференциального входного сигнала МОУ переменные составляющие коллекторных токов третьего 17 и пятого 20 дополнительных биполярных транзисторов компенсируют друг друга в цепи истока первого 3 входного полевого транзистора с управляющим р-n переходом и не влияют на работу схемы. Поэтому общий коэффициент усиления МОУ фиг. 2, например, для входа 4, определяется произведением

где Ky1 - коэффициент передачи напряжения uвх со входа 2 МОУ в цепь стока первого 3 полевого транзистора с управляющим р-n переходом;

Ky2 - коэффициент передачи напряжения от базы первого 15 дополнительного биполярного транзистора ко входу буферного усилителя 11;

Ky11≈1 - коэффициент передачи по напряжению буферного усилителя 11.

При этом

где Rэкв.сз - эквивалентное сопротивление в цепи стока первого 3 входного полевого транзистора с управляющим р-n переходом;

SДК - крутизна преобразования напряжения на входе 2 в приращение тока стока первого 3 входного полевого транзистора с управляющим р-n переходом.

Для Ky2 можно найти

где rэ=rэ15=rэ19 - дифференциальное сопротивление эмиттерных переходов первого 15 и четвертого 19 дополнительных биполярных транзисторов;

Rэкв.11 - эквивалентное сопротивление во входной цепи буферного усилителя 11;

ϕт=26 мВ - температурный потенциал;

- статически ток коллектора первого 15 и четвертого 19 дополнительных биполярных транзисторов.

Эквивалентное сопротивление Rэкв.сз определяется уравнением:

где yвых.3 - выходная проводимость первого 3 полевого транзистора с управляющим р-n переходом по цепи стока;

yвх.15, yвх.16, yвх.17 - входные проводимости по цепи базы первого 15, второго 16 и третьего 17 дополнительных биполярных транзисторов;

y18 - выходная проводимость первого 18 дополнительного токостабилизирующего двухполюсника.

Приближенно можно считать, что

где β=β15≈β16≈β17 - коэффициент усиления по току базы транзисторов 15, 16, 17;

ϕт=26 мВ - температурный потенциал;

- статический ток эмиттера транзисторов 15, 16, 17, 19, 20, 21.

Таким образом, общий коэффициент усиления МОУ

Анализ полученных выше уравнений показывает, что в заявляемом МОУ фиг. 2 коэффициент усиления по напряжению достигает значений 60-80 дБ. В схеме фиг. 3, соответствующей п. 2 формулы изобретения, этот параметр Ky принимает значение порядка 100 дБ, что достаточно для его многих применений. Данные выводы подтверждаются результатами компьютерного моделирования фиг. 5 и фиг. 8.

Таким образом, предлагаемый МОУ с двухкаскадной архитектурой имеет достаточно высокое усиление по напряжению (фиг. 8) - около 100 дБ и близкое к нулю напряжение смещения нуля (Uсм) (фиг. 9) (при отсутствии разброса параметров элементов и идеальных токовом зеркале 9 и буферном усилителе 11).

Представленный выше расчет параметров и компьютерное моделирование позволяют сделать вывод о том, что предлагаемое устройство имеет существенные преимущества в сравнении с известным по коэффициенту усиления в разомкнутом включении и может найти широкое применение в прецизионных системах преобразования радиотехнических сигналов.

Источники информации

1. Патент WO 03/04328, фиг. 6.

2. Патентная заявка US 2008/0186091, фиг. 4.

3. Патент US 6469576, фиг. 2

4. Патент US 7205799, фиг. 4, фиг. 5.

5. A.c. СССР 537435, фиг.1.

6. Патент US 6388519, фиг. 36.

7. Патентная заявка US 2003/0006841, фиг. 1.

8. Патентная заявка US 2013/0099782, фиг. 2.

9. Патент US 6255807, фиг. 5.

10. Патент US 6400225, фиг. 3.

11. Патентная заявка US 2003/0132803, фиг. 7.

12. Патент US 6977526, фиг. 1.

13.Патент RU 2517699, фиг.3.

14. The main connection circuits of the radiation-hardened differential difference amplifier based on the bipolar and field effect technological process / N.N. Prokopenko, O.V. Dvomikov, N.V. Butyrlagin, A.V. Bugakova // 2014 12th International conference on actual problems of electronic instrument engineering (APEIE - 2014) proceedings in 7 Volumes; Novosibirsk, October 2-4, 2014. - Novosibirsk State Technical University. - Vol. 1. - P. 29-34 DOI: 10.1109 / APEIE.2014.7040870 (фиг. 2).

15. Крутчинский, С.Г. Входные каскады дифференциальных и мультидифференциальных операционных усилителей с высоким ослаблением синфазного напряжения [Текст] / С.Г. Крутчинский, А.Е. Титов, М.С. Цыбин // Проблемы разработки перспективных микро- и наноэлектронных систем: Сборник трудов. - М.: ИППМ РАН, 2010. - С. 537-542. - ISSN 2078-7707.

16. Прокопенко Н.Н., Дифференциальные и мультидифференциальные усилители в элементном базисе радиационно-стойкого техпроцесса АБМК_1.5 [Текст] / Прокопенко Н.Н., Серебряков А.И., Бутырлагин Н.В. // Известия ЮФУ. Технические науки. Тематический выпуск «Проблемы управления в топливно-энергетических комплексах и энергосберегающие технологии». 2014. - №5 (154). - С. 58-66.

17. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т. экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.

18. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, О.В. Дворников, П.С. Будяков // Электронная техника. Серия 2. Полупроводниковые приборы. Выпуск 2 (233), Москва, ОАО «Пульсар», 2014 г. С. 53-64.

1. Биполярно-полевой мультидифференциальный операционный усилитель, содержащий первый (1) входной биполярный транзистор, база которого соединена с первым (2) входом устройства, эмиттер первого (1) входного биполярного транзистора связан с истоком первого (3) входного полевого транзистора с управляющим р-n переходом, затвор которого соединен со вторым (4) входом устройства, второй (5) входной биполярный транзистор, база которого соединена с третьим (6) входом устройства, эмиттер второго (5) входного биполярного транзистора связан с истоком второго (7) входного полевого транзистора с управляющим р-n переходом, затвор которого соединен с четвертым (8) входом устройства, токовое зеркало (9), согласованное с первой (10) шиной источника питания, выход которого подключен ко входу буферного усилителя (11), вторую (12) шину источника питания, отличающийся тем, что эмиттер первого (1) входного биполярного транзистора связан с истоком первого (3) входного полевого транзистора с управляющим р-n переходом через первый (13) дополнительный резистор, эмиттер второго (5) входного биполярного транзистора связан с истоком второго (7) входного полевого транзистора с управляющим р-n переходом через второй (14) дополнительный резистор, коллекторы первого (1) и второго (5) входных биполярных транзисторов связаны с первой (10) шиной источника питания, сток первого (3) входного полевого транзистора с управляющим р-n переходом связан с объединенными базами первого (15), второго (16) и третьего (17) дополнительных биполярных транзисторов, эмиттеры которых соединены со второй (12) шиной источника питания, причем между стоком первого (3) входного полевого транзистора с управляющим р-n переходом и второй (12) шиной источника питания включен первый (18) дополнительный токостабилизирующий двухполюсник, сток второго (7) входного полевого транзистора с управляющим р-n переходом связан с объединенными базами четвертого (19), пятого (20) и шестого (21) дополнительных биполярных транзисторов, эмиттеры которых соединены со второй (12) шиной источника питания, причем между стоком второго (7) входного полевого транзистора с управляющим р-n переходом и второй (12) шиной источника питания включен второй (22) дополнительный токостабилизирующий двухполюсник, коллекторы второго (16) и пятого (20) дополнительных биполярных транзисторов подключены к истоку первого (3) входного полевого транзистора с управляющим р-n переходом, коллекторы третьего (17) и шестого (21) дополнительных биполярных транзисторов подключены к истоку второго (7) входного полевого транзистора с управляющим р-n переходом, коллектор первого (15) дополнительного биполярного транзистора соединен со входом токового зеркала (9), а коллектор четвертого (19) дополнительного биполярного транзистора связан с выходом токового зеркала (9).

2. Биполярно-полевой мультидифференциальный операционный усилитель по п. 1, отличающийся тем, что сток первого (3) входного полевого транзистора с управляющим р-n переходом связан с объединенными базами первого (15), второго (16) и третьего (17) дополнительных биполярных транзисторов через эмиттерно-базовый переход первого (23) вспомогательного транзистора, коллектор которого соединен с первой (10) шиной источника питания, а эмиттер соединен со второй (12) шиной источника питания через первый (24) вспомогательный резистор, сток второго (7) входного полевого транзистора с управляющим р-n переходом связан с объединенными базами четвертого (19), пятого (20) и шестого (21) дополнительных биполярных транзисторов через эмиттерно-базовый переход второго (25) вспомогательного транзистора, коллектор которого связан с первой (10) шиной источника питания, а эмиттер соединен со второй (12) шиной источника питания через второй (26) вспомогательный резистор.



 

Похожие патенты:

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ.

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля.

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей.

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники, а именно к прецизионным устройствам усиления сигналов. Технический результат - повышение коэффициента усиления дифференциального сигнала в разомкнутом состоянии ОУ до уровня 90÷100 дБ.

Изобретение относится к области радиоэлектроники, в частности усиления сигналов. Технический результат - уменьшение статического тока, потребляемого ОУ при отключенной нагрузке.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат: уменьшение статического тока, потребляемого ОУ от источников питания (без нагрузки), и уменьшение напряжения смещения нуля.

Изобретение относится к области радиоэлектроники. Технический результат - повышение коэффициента усиления разомкнутого операционного усилителя.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя. Инструментальный усилитель с повышенным ослаблением входного синфазного сигнала содержит три дифференциальных каскада (3, 8, 13) на транзисторах (1, 2, 6, 7, 11, 12), выходной каскад (20), три вспомогательных транзистора (22-24) и три токостабилизирующих двухполюсника (27, 28, 29), при этом в него дополнительно введены три транзистра (31, 33, 35), три резистора местной отрицательной обратной связи (30, 32, 34) и три токостабилизирующих двухполюсника (36-38). 1 з.п. ф-лы, 7 ил.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему введены первый (14), второй (15), третий (16) и четвертый (17) дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого (14) и второго (15) дополнительных выходных транзисторов соединены с базой первого (10) выходного транзистора, базы третьего (16) и четвертого (17) дополнительных выходных транзисторов соединены с базой второго (12) выходного транзистора, коллекторы первого (14) и третьего (16) дополнительных выходных транзисторов соединены с первым (5) токовым выходом входного дифференциального каскада (1), коллекторы второго (15) и четвертого (17) дополнительных выходных транзисторов соединены со вторым (8) токовым выходом входного дифференциального каскада (1), причем в качестве первого (7) и второго (9) согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением. 2. з.п. ф-лы, 13 ил.

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала. Для этого предложен дифференциальный операционный усилитель для работы при низких температурах, который содержит первый (1) входной полевой транзистор, первый (2) вход устройства, первый (3) вспомогательный транзистор, первый (4) токостабилизирующий двухполюсник, первую (5) шину источника питания, второй (6) входной полевой транзистор, второй (7) вход устройства, второй (8) вспомогательный транзистор, второй (9) токостабилизирующий двухполюсник, первый (10) выход устройства, вторую (11) шину источника питания, первый (12) резистор отрицательной обратной связи, первый (13) выходной транзистор, второй (14) выходной транзистор, первую (15) цепь смещения потенциалов, первый (16) дополнительный транзистор, второй (17) дополнительный транзистор, вторую (18) цепь смещения потенциалов, первый (19) и второй (20) входы выходного дифференциального каскада (21). 3 з.п. ф-лы, 9 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля, повышение стабильности при низких температурах и воздействии радиации. Мультидифференциальный операционный усилитель содержит первый входной биполярный транзистор, первый входной полевой транзистор с управляющим р-n переходом, первое токовое зеркало, источник питания, второй входной биполярный транзистор, второй входной полевой транзистор с управляющим р-n переходом, второе токовое зеркало, первое дополнительное токовое зеркало, второе дополнительное токовое зеркало. 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: повышение коэффициента усиления по напряжению (Ку) при сохранении высокой температурной и радиационной стабильности напряжения смещения нуля. Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления содержит входной дифференциальный каскад, первый выходной транзистор, коллектор которого связан со входом токового зеркала, источник питания, второй выходной транзистор, первый вспомогательный транзистор, второй вспомогательный транзистор, третий вспомогательный транзистор, первый дополнительный повторитель напряжения, четвертый вспомогательный транзистор и второй дополнительный повторитель напряжения. 11 ил.

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный ему неинвертирующий выход (2) устройства, инвертирующий вход (3) устройства и синфазный ему инвертирующий выход (4) устройства, первый (5) входной дифференциальный каскад, второй (8) входной дифференциальный каскад, выходной дифференциальный каскад (14), при этом в схему введен дополнительный дифференциальный каскад (20), неинвертирующий вход (21) которого соединен с неинвертирующим (1) входом устройства, инвертирующий вход (22) дополнительного дифференциального каскада (20) подключен к инвертирующему (3) входу устройства, первый (23) токовый выход дополнительного дифференциального каскада (20) связан с первым (12) токовым выходом второго (8) входного дифференциального каскада, а второй (24) токовый выход дополнительного дифференциального каскада (20) связан со вторым (16) токовым выходом второго (8) входного дифференциального каскада. 5 ил.

Изобретение относится к области радиоэлектроники и вычислительной техники. Технический результат заключается в обеспечении дополнительно к режиму последовательного во времени преобразования входных потенциальных сигналов в выходное напряжение, алгебраического суммирования входных дифференциальных и недифференциальных напряжений, а также изменения их фазы в процессе мультиплексирования. Мультиплексор содержит N входных дифференциальных каскадов, имеющих инвертирующий и неинвертирующий входы, логический потенциальный вход для включения/выключения дифференциального каскада, и токовый выход, связанный с входом выходного буферного усилителя. Причем каждый из N входных дифференциальных каскадов имеет диапазон линейной работы по дифференциальному входу, превышающий максимальную амплитуду его входного дифференциального напряжения, потенциальный выход выходного буферного усилителя соединен с инвертирующим входом первого входного дифференциального каскада, неинвертирующий вход которого связан с общей шиной источника питания, причем каждый логический потенциальный вход включения/выключения каждого входного дифференциального каскада связан с выходом соответствующих из N триггеров, входы управления состоянием которых соединены с выходами цифрового управляющего устройства. 17 ил.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала при работе в диапазоне низких температур. Указанный результат достигается посредством инструментального усилителя для работы при низких температурах, который содержит первый входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым входом устройства, исток подключен к стоку первого вспомогательного транзистора первого дифференциального каскада, а сток через первый двухполюсник нагрузки связан с первой шиной источника питания и соединен с первым выходом, второй входной полевой транзистор первого дифференциального каскада. Между второй шиной источника питания и истоком второго выходного транзистора включен второй токостабилизирующий двухполюсник, причем второй и первый выходы соединены с соответствующими входами выходного каскада, выход которого, являющийся потенциальным выходом устройства, связан с четвертым входом устройства через цепь общей отрицательной обратной, а третий вход устройства соединен с общей шиной источников питания. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления электрических сигналов различных датчиков. Технический результат заключается в повышении точности за счет уменьшения систематической составляющей напряжения смещения нуля низкотемпературного радиационно-стойкого мультидифференциального операционного усилителя (МОУ). Он содержит дифференциальные каскады на основе транзисторов, связанных друг с другом. Токовый выход первого (1) дифференциального каскада соединен с первой (15) шиной источника питания через первый (18) токостабилизирующий двухполюсник и подключен к эмиттеру первого (19) согласующего транзистора, второй (12) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (20) согласующего транзистора и через второй (21) токостабилизирующий двухполюсник соединен с первой (15) шиной источника питания. Причем первый (11) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (26) выходного транзистора и подключен к коллектору первого (19) согласующего транзистора, коллектор второго (26) выходного транзистора связан со вторым (28) входом выходного дифференциального каскада (25), выход которого соединен с выходом устройства (17). 3 з.п. ф-лы, 15 ил.

Изобретение относится к области аналоговой микроэлектроники. Технический результат: повышение быстродействия ОУ в режиме большого сигнала до уровня 20000 В/мкс. Это обеспечивается за счет исключения динамической перегрузки промежуточного каскада ОУ, выполненного в виде комплементарных «перегнутых» каскодов. Таким образом, предложен многоканальный быстродействующий операционный усилитель, который содержит входной дифференциальный каскад с первым и вторым входами и четырьмя токовыми выходами, первый-четвертый выходные транзисторы, буферный усилитель и корректирующий конденсатор, два токовых зеркала, причем в качестве входного дифференциального каскада используются каскады с широким диапазоном активной работы, а каждый первый, второй, третий и четвертый токостабилизирующие двухполюсники выполнены в виде соответствующих резисторов. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня. Для этого предложен биполярно-полевой мультидифференциальный операционный усилитель, который содержит первый входной биполярный транзистор, первый вход устройства, первый входной полевой транзистор с управляющим р-n переходом, второй вход устройства, второй входной биполярный транзистор, третий вход устройства, второй входной полевой транзистор с управляющим р-n переходом, четвертый вход устройства, токовое зеркало, первую шину источника питания, буферный усилитель, вторую шину источника питания, первый и второй дополнительные резисторы, первый, второй и третий дополнительные биполярные транзисторы, первый дополнительный токостабилизирующий двухполюсник, четвертый, пятый и шестой дополнительные биполярные транзисторы, второй дополнительный токостабилизирующий двухполюсник. 1 з.п. ф-лы, 9 ил.

Наверх