Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления

Изобретение относится к технологии регазификации криогенных жидкостей и может быть использовано в криогенной технике. Характеризуется тем, что формируют воздушный поток, направляют его через продукционный испаритель 3, формируют напор гидростатического столба криогенной жидкости, направляют жидкий криопродукт из резервуара 5 в испаритель наддува 4, осушают поток воздуха, направляют осушенный поток воздуха вертикально вниз через продукционный испаритель 3 и испаритель наддува 4 и нагревают полученный продукционный поток газа до заданной температуры. При этом газификатор содержит роторный адсорбционный осушитель воздуха низкого давления 1, блок вентиляторов 2, продукционный испаритель 3, испаритель наддува 4, резервуар жидкого криопродукта 5, предохранительный клапан 6 и догреватель продукционного потока газа 7. Изобретение направлено на увеличение производительности и эффективности газификатора бесперебойного действия. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к криогенной технологии, в частности к технологии регазификации криогенных жидкостей, и может быть использовано в регазификационных установках.

Из уровня техники известен способ холодной регазификации криогенной жидкости, основанный на принудительном обдуве атмосферным воздухом, технической реализацией которого является атмосферный испаритель принудительного обдува. Этот известный способ характеризуется тем, что формируют и с высокой скоростью направляют вентилируемый воздушный поток вертикально вниз через продукционный испаритель, отслеживают толщину слоя образовавшегося льда и прекращают процесс испарения криогенной жидкости на интервал времени, в течение которого поверхность испарителя оттаивает до допустимого значения толщины льда на его поверхности. Устройство, реализующее известный способ, содержит атмосферный продукционный испаритель и блок вентиляторов, заключенные в общий кожух [http://energosmart.com/ru/products/45/, 2015 г.]. Принцип работы атмосферного испарителя основан на принудительной конвекции атмосферного воздуха, содержащего нежелательную влагу. Принудительная конвекция более эффективно использует рабочую поверхность испарителя, что минимизирует габаритные размеры системы, реализующей известный способ регазификации. Непрерывная круглосуточная работа данного устройства возможна только при использовании нескольких испарителей с системой их автоматического переключения. Данное известное техническое решение разработано для использования его на предприятиях с ограниченной территорией, которые нуждаются в больших объемах газообразных продуктов разделения воздуха.

Недостаток известного способа холодной регазификации, основанного на принудительном обдуве, состоит в том, что испарение криогенной жидкости сопровождается десублимацией из атмосферного воздуха кристаллов воды и углекислоты на поверхности атмосферного испарителя, что приводит к существенному снижению эффективности работы испарителя из-за увеличения термического сопротивления теплообменных поверхностей. В результате производительность установок, реализующих известный способ холодной регазификации с принудительным обдувом, резко падает по причине обмерзания атмосферного испарителя и последующих циклических длительных простоев установки, обусловленных необходимостью отогрева и удаления инея с теплообменных поверхностей.

Наиболее близким известным техническим решением к заявляемому, принятым в качестве прототипа, является способ регазификации криогенной жидкости, технической реализацией которого является газификатор криогенной жидкости, который характеризуется тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, одну часть полученного сжатого газа направляют в резервуар жидкого азота, вытесняют жидкость в продукционные испарители, а вторую (большую) часть сжатого газа направляют в пневмопривод вентиляторного устройства, обеспечивающего вращение основного и дополнительного вентиляторных колес [Патент RU 2014553, МПК F17C 9/02, 1994 г.]. Устройство, осуществляющее известный способ, содержит резервуар жидкого криопродукта с испарителем наддува, пневмопривод вентиляторного устройства, которое содержит осевое основное вентиляторное колесо и подсоединенное через муфту включения дополнительное колесо, а также продукционные испарители жидкости. При этом обеспечивается интенсификация теплообмена посредством обдува блоков продукционных испарителей.

Недостатком прототипа является то, что в процессе испарения криопродукта на поверхностях испарителя наддува и продукционных испарителей жидкости образуется иней и последующее их обледенение за счет влаги, содержащейся в атмосферном воздухе. Кроме того, продукционный поток газа имеет температуру, значение которой существенно ниже температуры окружающего воздуха, что может вызывать обмерзание запорной и предохранительной арматуры, а также может не соответствовать требованиям по минимально допустимой температуре газа, выдаваемого потребителю, и требованиям по хладноломкости баллонов-реципиентов. В случае, если температура продукционного потока газа будет ниже температуры хладноломкости баллонов-реципиентов, может произойти их разрушение, что тем более недопустимо при эксплуатации газификатора криогенной жидкости на опасных и особо опасных производственных объектах, где продукционный поток газа (азота) используется в аварийных ситуациях. Указанные недостатки значительно снижают производительность и эффективность установки, реализующей известный способ, выбранный в качестве прототипа.

Технической задачей изобретения является повышение эффективности процесса холодной регазификации криогенных жидкостей за счет улучшения условий теплосъема.

Технический результат изобретения состоит в том, что повышается производительность и эффективность устройства, осуществляющего заявленный способ холодной регазификации криогенной жидкости бесперебойного действия.

Сущность изобретения состоит в том, что, кроме известной и общей совокупности существенных действий, которые характеризуются тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, в предлагаемом способе холодной регазификации криогенной жидкости бесперебойного действия первоначально осушают поток воздуха, направляют осушенный воздух вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры. При этом устройство, реализующее предлагаемый способ, кроме известных и общих существенных признаков, а именно продукционного испарителя, испарителя наддува и блока вентиляторов, с помощью которых формируют и направляют вентилируемый воздушный поток через продукционный испаритель, дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен с входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью осуществлять направление ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа до заданной температуры.

Новизна изобретения заключается в том, что в предлагаемом способе холодной регазификации криогенной жидкости бесперебойного действия осушают поток воздуха, направляют осушенный воздух вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры. При этом устройство, реализующее предлагаемый способ, дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен с входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью направления ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа до заданной температуры, что обеспечивает повышение производительности и эффективности устройства, осуществляющего способ холодной регазификации криогенной жидкости бесперебойного действия.

Перечень чертежей: фиг. 1 - результаты известного экспериментального исследования процесса газификации [Ельчинов В.П. Отечественные атмосферные испарители криогенных жидкостей // Холодильный бизнес, №7 2012, с. 14-22];

фиг. 1 а) - изменение во времени толщины слоя инея на первой, холодной (хс), и второй, теплой (тс), последовательно соединенных секциях испарителя;

фиг. 1 б) - изменение во времени температуры недорекуперации газифицированного азота относительно температуры окружающей среды;

фиг. 2 - принципиальная функциональная схема холодной регазификации криогенной жидкости бесперебойного действия, реализующая заявленный способ.

На фиг. 1 и 2 обозначено: 1 - роторный адсорбционный осушитель воздуха низкого давления, 2 - блок вентиляторов, 3 - продукционный испаритель, 4 - испаритель наддува, 5 - резервуар жидкого криопродукта, 6 - предохранительный клапан, 7 - догреватель продукционного потока газа, τ - продолжительность эксперимента, δ(τ) - толщина изменяемого во времени слоя инея на поверхности испарителя, ΔТнед - температура недорекуперации газифицированного азота относительно температуры окружающей среды.

В исходном положении выход роторного адсорбционного осушителя воздуха низкого давления 1 последовательно соединен с блоком вентиляторов 2, продукционным испарителем 3 и испарителем наддува 4, которые закрыты единым кожухом (на фиг. 2 кожух не показан). Вход испарителя наддува 4 соединен с нижней частью резервуара жидкого криопродукта 5, выход испарителя наддува 4 соединен с верхней частью резервуара жидкого криопродукта 5, вход продукционного испарителя 3 - с нижней частью резервуара жидкого криопродукта 5, выход продукционного испарителя 3 соединен с догревателем продукционного потока газа 7, дополнительно, роторный адсорбционный осушитель воздуха низкого давления 1 соединен с догревателем продукционного потока газа 7. Узлы 2, 3, 4 заключены в общий кожух.

Предлагаемый способ холодной регазификации реализуется следующим образом.

Известные действия по формированию и направлению вентилируемого воздушного потока вертикально вниз через продукционный испаритель осуществляют с помощью блока вентиляторов 2 и продукционного испарителя 3. Предлагаемые действия по осушению воздушного потока и подогреву полученного продукционного потока газа осуществляют соответственно с помощью роторного адсорбционного осушителя воздуха низкого давления 1 и догревателя 7 продукционного потока газа. Далее, после роторного адсорбционного осушителя воздуха низкого давления 1 и блока вентиляторов 2 сформированный, осушенный поток воздуха под избыточным давлением, исключающим попадание наружного неосушенного воздуха под кожух, направляют через последовательно расположенные в кожухе продукционный испаритель 3 и испаритель наддува 4. Так как испаритель наддува 4 расположен ниже уровня резервуара 5 жидкого криопродукта, он под напором гидростатического столба заполнен криопродуктом, пары которого, испаряясь за счет тепла осушенного атмосферного воздуха, поступают под избыточным давлением обратно в верхнюю часть резервуара 5 жидкого криопродукта и вытесняют криогенную жидкость в продукционный испаритель 3.

Жидкий криопродукт, находясь в условиях, обеспечивающих его испарение за счет тепла осушенного атмосферного воздуха, переходит в газообразную фазу, газифицированный продукционный поток газа из продукционного испарителя 3 поступает на вход догревателя 7 продукционного потока газа, в котором осуществляется его подогрев путем использования горячего регенерирующего потока роторного адсорбционного осушителя воздуха низкого давления 1, что повышает КПД устройства в целом. Действие по нагреву продукционного потока газа осуществляют до заданной температуры. Реализация предлагаемого способа холодной регазификации криогенной жидкости бесперебойного действия обеспечивает существенное увеличение производительности и эффективности устройства холодной регазификации криогенной жидкости бесперебойного действия, исключаются циклические, длительные простои установок, обусловленные необходимостью отогрева и размораживания теплообменных поверхностей испарителей 3 и 4 за счет использования в качестве теплоносителя осушенного атмосферного воздуха и использования для подогрева продукционного потока газа регенерирующего потока роторного адсорбционного осушителя воздуха низкого давления 1.

Промышленная осуществимость предлагаемого способа обосновывается тем, что в нем используются действия и операции, известные в аналоге и прототипе по своему прямому функциональному назначению. В организации-заявителе разработана функциональная схема действующей модели, реализующая заявленный способ холодной регазификации криогенной жидкости бесперебойного действия в 2015 году.

Положительный эффект от использования изобретения состоит в том, что повышается не менее чем на 15…20% производительность холодной регазификации криогенной жидкости бесперебойного действия за счет обеспечения его непрерывной и бесперебойной работы, что подтверждается ориентировочными расчетами.

,

,

где τ1 и τ2 - время работы газификатора криогенной жидкости до момента его останова для отогрева и время простоя газификатора в период отогрева соответственно;

у - время работы газификатора с момента начала процесса инееобразования до момента его останова для отогрева;

а - момент начала образования инея на поверхности испарителя;

b - момент достижения максимально допустимой толщины инея на поверхности испарителя.

В отличии от прототипа, в предлагаемом способе, как следует из выражений (1) и (2), отсутствует необходимость длительных, циклических простоев газификатора для его отогрева и размораживания теплообменных поверхностей.

Кроме того, повышается эффективность газификатора за счет повторного использования горячего регенерирующего потока воздуха роторного адсорбционного осушителя воздуха низкого давления для подогрева продукционного потока газа. При этом существенно снижается вероятность охлаждения баллонов-реципиентов до температуры ниже температуры хладноломкости баллонов, что особенно важно при эксплуатации газификатора криогенной жидкости на опасных и особо опасных производственных объектах.

1. Способ холодной регазификации криогенной жидкости бесперебойного действия, характеризующийся тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, отличающийся тем, что первоначально осушают поток воздуха, направляют осушенный поток воздуха вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры.

2. Устройство, осуществляющее способ по п. 1, содержит продукционный испаритель, испаритель наддува и блок вентиляторов, с помощью которых формируют и направляют вентилируемый воздушный поток через продукционный испаритель, отличающееся тем, что дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен со входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью осуществлять направление ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит охлаждаемую криогенной жидкостью камеру сгорания, смесительную головку, включающую в себя блок подачи горючего, блок подачи окислителя, блок огневого днища, при этом в указанных блоках по концентрическим окружностям установлены форсунки, состоящие из полого наконечника и втулки, охватывающей с кольцевым зазором наконечник, при этом на наружной поверхности наконечника форсунки выполнены ребра, взаимодействующие своей наружной частью с внутренней поверхностью втулки, причем во внутренней полости камеры сгорания расположены теплообменные элементы, выполненные в виде трубок Фильда, у которых вход наружной трубки и выход внутренней трубки соединены с полостями блока огневого днища, при этом одна из его полостей сообщается с трактом охлаждения камеры сгорания, а в выходной части камеры сгорания установлен газовод, в варианте исполнения, ребра, выполненные на наружной поверхности наконечника форсунки смесительной головки, расположены под углом к продольной оси форсунки, наконечник форсунки смесительной головки со стороны подачи окислителя выполнен глухим, при этом на его наружной поверхности выполнены тангенциальные отверстия, равномерно расположенные по окружности и сообщающиеся с полостью окислителя 2 з.п.

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, состоящий из внутренней и наружной цилиндрических оболочек, установленных коаксиально с кольцевым зазором и соединенных между собой с помощью днища, при этом во внутренней полости корпуса расположена коаксиально дополнительная цилиндрическая оболочка, образуя единый кольцевой канал для прохода греющего теплоносителя от периферии испарителя к его центру, причем каждая из оболочек состоит из двух жестко соединенных между собой цилиндров, между которыми образованы каналы, объединенные в коллекторы для подвода и отвода криогенной жидкости, смесительную головку со смесительными элементами, воспламеняющим устройством и коллекторами подвода компонентов топлива, установленную на входе в кольцевой канал.

Изобретение относится к области хранения и регазификации сжиженных углеводородных газов. Способ предусматривает изотермическое хранение сжиженного углеводородного газа (СУГ) и последующую его регазификацию для подачи под заданным давлением в сеть потребления с применением парокомпрессионного холодильного агрегата, работающего в режиме теплового насоса.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки, заправки жидкого азота, а также для заморозки вакуумных ловушек. Устройство для подачи хладагента в камеру холода содержит воронку, выполненную как одно целое с фланцем, и герметизирующую пробку, выполненную с вертикальным сквозным отверстием, расположенную между горловиной сосуда Дьюара и посадочным местом во фланце.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки и заправки жидкого азота, а также для заморозки вакуумных ловушек. Стационарное устройство для подачи хладагента в камеру холода содержит как минимум один стационарный сосуд Дьюара, каждый из которых снабжен фланцем и герметизирующей кольцеобразной прокладкой, расположенной между торцом горловины сосуда Дьюара и посадочным местом во фланце, выполненном с двумя патрубками, расположенными вертикально над горловиной сосуда Дьюара.

Изобретение относится к области теплотехники и может быть использовано для испарения сжиженного углеводородного газа, находящегося в жидком состоянии. Испаритель сжиженного углеводородного газа содержит корпус, заполненный жидким промежуточным теплоносителем, полую обечайку с глухим выходным торцом, установленную на оси корпуса.

Изобретение относится к машиностроению, а именно к мобильным топливозаправочным модулям, служащим для приема, хранения и выдачи сжиженного газа. Топливозаправочный модуль для сжиженного газа включает корпус, имеющий дно, крышу и боковые стенки, снабженные сквозными отверстиями.

Изобретение относится к области теплотехники и может быть использовано для испарения сжиженного углеводородного газа, находящегося в жидком состоянии. Испаритель сжиженного углеводородного газа содержит корпус, состоящий из наружной и внутренней стенок.

Раскрыт способ для испарения криогенной жидкости. Способ включает: сжигание топлива в горелке для производства отработанного газа; смешивание атмосферного воздуха и отработанного газа для производства смешанного газа; осуществление контакта смешанного газа посредством непрямого теплообмена с криогенной жидкостью для испарения криогенной жидкости.

Изобретение относится к области энергетики, в частности к системам автономного энергоснабжения удаленных населенных пунктов и других объектов с использованием газификации на основе сжиженного природного газа.

Изобретение относится к криогенной технике. Способ подачи потребителю газообразного водорода высокого давления заключается в нагнетании насосом по перекрываемому трубопроводу жидкого водорода из резервуара в накопитель-газификатор, выполненный в виде емкости полного объема Vп, где с повышением температуры и давления за счет подводимого тепла жидкий водород превращают в газообразный высокого давления. Емкость с объемом Vп выполнена с расположенной в ней внутренней емкостью объемом Vв, которая с перекрытием соединена с насосом и через сквозные отверстия - с емкостью объема Vп. Отношение объемов Vв/Vп выбрано в диапазоне от 0,3 до 1,0 в зависимости от максимального давления водорода при постоянной максимальной температуре емкости объема Vп. Заполнение внутренней емкости объемом Vв за один цикл осуществляют водородом дозированной массы со сверхкритическими значениями давления и температуры. Изохорический нагрев водорода обеспечивают теплом окружающей среды с достижением заданного максимально допустимого давления газообразного водорода перед подачей потребителю. После заправки баллонов потребителя при снижении давления в емкости Vп до установленного уровня отключают перекрываемый трубопровод от потребителя и подключают к технологической емкости. Охлаждают оставшийся в емкости Vп водород жидким азотом по криогенным магистралям из источника и продолжают перепускать водород в технологическую емкость со снижением давления и температуры в емкости Vп до уровня значения давления водорода на выходе из насоса при работе. Затем включают насос, добавляют до заданного значения дозированную массу водорода из резервуара жидкого водорода и осуществляют следующий цикл подачи потребителю газообразного водорода. Технический результат заключается в достижении максимально допустимого давления газообразного водорода в заполняемой емкости, исключении вибраций потока и уменьшении энергозатрат, повышении долговечности накопителя-газификатора, увеличении быстродействия заправки баллонов, обеспечении возможности восстановления высокого давления водорода в емкости до уровня максимального давления после снижения давления. 1 ил.
Наверх