Способ получения растворов с отрицательным окислительно-восстановительным потенциалом



Способ получения растворов с отрицательным окислительно-восстановительным потенциалом
Способ получения растворов с отрицательным окислительно-восстановительным потенциалом

 


Владельцы патента RU 2615519:

Федеральное государственное бюджетное научное учреждение "Поволжский научно-исследовательский институт производства и переработки мясомолочной продукции" (RU)

Изобретение относится к области обработки воды и водных растворов и может быть использовано в растениеводстве, пищевой промышленности. Способ получения водных растворов с отрицательным окислительно-восстановительным потенциалом включает насыщение помещенных в емкость исходных водных растворов водородом, подаваемым от источника водорода. В качестве емкости используют сосуды типа склянки Дрекселя, в качестве источника водорода используют прибор типа аппарата Кипа, насыщение водородом проводят в течение 0,5-1 ч, в качестве исходных растворов используют растворы 0,5-2 г/л KCl или K2HPO4 в количестве 100 или 200 мл. Получают водные растворы с отрицательным ОВП от -150 до -400 мВ. Технический результат – упрощение способа и аппаратурного оформления процесса. 3 пр.

 

Изобретение относится к области обработки воды, водных растворов солей с целью изменения их окислительно-восстановительных свойств и может быть использовано в растениеводстве, пищевой промышленности, теплоэнергетике.

В настоящее время в сельском хозяйстве, медицине, биологии одним из важных параметров воды и водных систем является их окислительно-восстановительный потенциал (ОВП).

Применение обычной воды и ее растворов с растворенными газами (особенно с кислородом) человеком способствует в ряде случаев окислительному разрушению биоструктур организма и старению. Эти негативные процессы могут быть замедлены, если использовать жидкости, обладающие восстановительными свойствами, близкими к некоторым жидкостям организма.

Известен способ обработки питательной воды (слабо минерализованного раствора) котлоагрегатов в энергетике водородом с целью удаления растворенных газов (кислород, углекислота и др.) снижения ОВП, например с 600 до -120 мВ (ХСЭ) и коррозии [1].

Известен способ и устройство для электрохимической обработки воды или водных растворов в электролизере в катодной камере, при этом изменяется рН и ОВП [2]. Процесс относительно сложен и энергоемок.

Описан способ обработки воды и водных растворов в электролизере с диафрагмой. При этом образуется католит с моющими свойствами, и может быть использован для обеззараживания воды, т.е. обладает биоактивностью [3].

Известен способ и установка для получения жидкой среды (воды и водных растворов) с отрицательным потенциалом путем насыщения газообразным водородом [4].

Водород получали в ячейке с никелевым электродом с раствором 30% KOH. Водород пропускали в бутыль вверх дном с исследуемой водой объемом 0,5 л.

После пропускания Н2 бутыль (погруженную в ванну с водой) закрывали пробкой, извлекали из ванны и выдерживали вверх дном либо на боку. Исследуемая вода предварительно проходила очистку на установке типа БЭР-49-М серии «Полимин».

Заправка водородом на установке плазменной обработки жидкости проводилась на следующие сутки, то есть через 24 часа после наполнения, для того чтобы озон, содержащийся в очищенной воде, успел полностью распасться. После заправки воды водорода (30-40 мл на 0,5 л воды) выдерживали 24 ч.

За это время успевает установиться ОВП на уровне -200…-250 мВ, при дальнейшей выдержке ОВП может уменьшиться до -400 мВ.

Этот способ и технология довольно сложны, требуют наличия ванны с водой, установки очистки, хранение жидкости насыщенной водородом только в определенном положении.

Описан способ и устройство для получения жидкой среды (воды и водных растворов) с отрицательным ОВП путем ее насыщения водородом, находящимся под давлением, содержащимся в емкости для соединения жидкости с водородом, водород в газовом баллоне. В качестве емкости используют кавитационный эжектор-смеситель. Получают воду с ОВП -200 мВ за время обработки 10 с [5] (прототип).

Вызывает сомнения, чтобы за такой короткий промежуток времени можно было добиться насыщения воды водородом.

Кроме того, недостатком способа является использование сложной технологии, специального смесителя и связанных с этим относительно высоких затрат. Отсутствуют примеры применения насыщенной водородом воды.

Технический результат - упрощение способа, в том числе аппаратурного оформления, определение параметров обработки водородом водной среды с отрицательным ОВП.

Это достигается тем, что в качестве исходной жидкости использовали разбавленные водные растворы, например растворы солей калия (0,5-2,0 г/л) KCl или K2HPO4. В качестве емкости для соединения растворов с водородом брали сосуды типа склянки Дрекселя с рабочим объемом 100 или 200 мл, в качестве источника газообразного водорода (Н2) использовали прибор - аппарат типа Киппа [6], в котором водород получали взаимодействием серной кислоты с металлическим гранулированным цинком - химических реактивов, либо водород из баллона.

Предварительно было показано, что желательно брать растворы KCl или K2HPO4 в концентрации 0,5-2,0 г/л в объеме 100 мл либо 200 мл, далее проводили обработку водородом в течение 0,5-1 ч.

Пример 1.

Приготовление исходных растворов. В мерных колбах с навеской реактивных солей готовили растворы 1 г/л KCl и K2HPO4.

Пример 2.

Приготовление насыщенного водородом раствора KCl 100 мл раствора KCl загружали в склянку Дрекселя и из аппарата Киппа пропускали постепенно газообразный водород (примерная скорость пропускания 60-70 пузырьков в 1 мин) до насыщения в течение 0,5 ч.

Пример 3.

Приготовление насыщенного раствора K2HPO4. Для этого 200 мл раствора K2HPO4 загружали в склянку Дрекселя и пропускали водород от аппарата Кипа, как в примере 2, до насыщения в течение 1 ч.

Показатели, полученные после насыщения водородом растворов:

Как видно из приведенных данных, предлагаемый способ более прост в аппаратурном оформлении, определены параметры обработки водородом водных растворов KCl или K2HPO4 с отрицательным потенциалом.

Источники информации

1. Худяков, С.В. и др. Электролизные методы подготовки подпиточной воды // Теплоэнергетика, 1991. - №11. - С. 68.

2. Патент RU 2297981, C02F 1/46, опубл. 27.04.2007.

3. Бахир В.М. Современные технические электрохимические системы для обеззараживания, очистки и активирования воды. М.: ВНИИМТ, 1999. - 84 с.

4. Пискарев, И.М. и др. Окислительно-восстановительный потенциал воды, насыщенной водородом // Электронный научный журнал «Исследовано в России» / http://www.sci-journal.ru/articles/2007/023.pdf

5. Патент RU №71332, C02F 1/46. Полезная модель Устройство получения жидкой среды с отрицательным потенциалом путем насыщения водородом от 10.03.2008.

6. Рипан Р., Четяну И. // Практические работы по неорганической химии. М: Мир, 1965. - С. 55.

Способ получения водных растворов с отрицательным окислительно-восстановительным потенциалом, включающий насыщение помещенных в емкость исходных водных растворов водородом, подаваемым от источника водорода, отличающийся тем, что в качестве емкости используют сосуды типа склянки Дрекселя, в качестве источника водорода используют прибор типа аппарата Кипа, насыщение водородом проводят в течение 0,5-1 ч, в качестве исходных растворов используют растворы 0,5-2 г/л KCl или K2HPO4, количество растворов составляет 100 или 200 мл, получают водные растворы с отрицательным ОВП от -150 до -400 мВ.



 

Похожие патенты:
Изобретение относится к области биотехнологии. Предложен штамм бактерий Pseudomonas yamanorum ВКМ В-3033D, предназначенный для активизации биодеструкции нефти и нефтепродуктов в воде, а также в масляных грунтах на участках железной дороги.

Изобретения могут быть использованы в химической технологии для переработки солесодержащих сточных вод производства 2-этилгексанола и 2-этилгексановой кислоты. Способ включает обработку исходной смеси серной кислотой и отделение жирных кислот.

Изобретение относится к галургии, в частности к извлечению урана из подземных вод. В предложенном способе, включающем сорбцию урана на цеолите, согласно заявляемому изобретению цеолит предварительно модифицируют путем нанесения на его поверхность гидроксидов меди (II) и никеля с получением массового соотношения цеолит:гидроксид меди (II):гидроксид никеля, равного 10:1:4.

Изобретение относится к области физики и может быть использовано для безреагентной очистки от взвешенных веществ и коллоидных частиц с размером частиц менее 0,5 мкм, а также от тяжелых металлов и солей промышленных сточных (карьерных, отвальных, дренажных и т.д.) вод.

Обрабатывают жидкие продукты питания, такие как вода, вино, пиво, сок, молоко, удалением из них окислителей путем насыщения водородом с избытком по отношению к кислороду более чем в 1,2 раза при барботировании.

Изобретение может быть использовано на предприятиях цветной металлургии, в золотодобывающей промышленности и в гальваническом производстве для очистки сточных вод и пульп, содержащих цианиды, тиоцианаты, тяжелые металлы, мышьяк и сурьму.

Изобретение относится к биосорберам и может быть использовано для очистки сточных вод. Биосорбер включает биореактор 1 с псевдоожиженным слоем загрузки, систему насыщения воды кислородом воздуха, трубопровод 5 подачи сточных вод на обработку, трубопровод 6 отвода очищенной воды и трубопровод рециркулируемого потока с циркуляционным насосом, модуль автоматизированного управления и приемно-дозирующую камеру 9, соединенную через насос-дозатор 10 с камерой-уловителем 11 вынесенного угля.

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - сокращение сроков освоения скважины, энергетических и трудозатрат на транспортировку, переработку и утилизацию используемой в способе кислоты, уменьшение коррозии внутрискважинного оборудования.

Изобретение относится к сельскому хозяйству, в частности к устройствам для очистки водоемов от водорослей. Устройство содержит плавсредство, ячеистый барабан и заборник водной смеси.

Изобретение относится к системам очистки и/или обессоливания жидкости, преимущественно воды. Система очистки жидкости содержит линию подачи исходной жидкости с установленным на ней клапаном подачи исходной жидкости, подключенную к блоку фильтрации, включающему средство очистки жидкости со входом для исходной жидкости и выходами для очищенной и дренажной жидкости, устройство смешения жидкости, средство поддержания давления, линию подачи смеси исходной жидкости и концентрата, образующегося в процессе очистки жидкости, в средство очистки жидкости, линию рециркуляции, линию очищенной жидкости, линию дренажной жидкости и блок управления, связанный со средством поддержания давления, средством контроля изменения давления и клапаном подачи исходной жидкости.

Изобретение относится к очистке воды. Установка для ультрафиолетовой очистки воды в открытом канале включает по меньшей мере один модуль (1), содержащий удлиненные ультрафиолетовых лампы (2) в кронштейне, основание (8), имеющее по меньшей мере одну направляющую, жестко соединенную с основанием (8), и по меньшей мере один направляющий рельс (7), соединенный с кронштейном. Направляющий рельс (7) установлен с возможностью перемещения в направляющей. Лампы (2) ориентированы параллельно друг другу и под углом к направлению потока (3) их продольной осью. Причем угол составляет предпочтительно от тридцати до восьмидесяти градусов. Изобретение позволяет обеспечить более простое и безопасное техническое обслуживание модулей и ламп снаружи канала. 26 з.п. ф-лы, 5 ил.
Наверх