Жесткое колесо волновой передачи дискретного движения



Жесткое колесо волновой передачи дискретного движения
Жесткое колесо волновой передачи дискретного движения
Жесткое колесо волновой передачи дискретного движения
Жесткое колесо волновой передачи дискретного движения
Жесткое колесо волновой передачи дискретного движения

 


Владельцы патента RU 2615578:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)

Изобретение относится к области машиностроения, а более конкретно к зубчатым передачам. Жесткое колесо волновой передачи дискретного движения состоит из двух пар зубчатых секторов. В зонах контакта секторов жесткого зубчатого колеса зубья секторов волновой муфты выполнены переменной высоты hi. Одинаковые зубчатые секторы расположены диаметрально противоположно, причем одна пара секторов при зацеплении с гибким колесом образует волновую зубчатую передачу, а другая - волновую зубчатую муфту. При этом в зонах сопряжения секторов зубья секторов волновой муфты имеют переменную высоту. Переменные значения высоты hi зубьев могут быть определены математическими формулами и зависимостями. Достигается повышение долговечности передачи. 1 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к машиностроению и приборостроению и может быть использовано в механических устройствах, реализующих дискретное движение выходного звена при непрерывном движении входного.

УРОВЕНЬ ТЕХНИКИ

Известны волновые передачи с роликовыми, дисковыми и кулачковыми генераторами волн внутреннего и кольцевыми генераторами волн внешнего деформирования [1].

Наиболее близким техническим решением является шаговая волновая передача [2], которая содержит гибкое колесо, генератор волн и жесткое колесо, состоящее из четырех зубчатых секторов, с которыми гибкое колесо последовательно образует двухволновую зубчатую передачу или волновую зубчатую муфту. При непрерывном вращении генератора волн, обеспечивающем в зоне одной пары зубчатых секторов жесткого колеса волновое зацепление, реализуется вращательное движение выходного звена, при зацеплении гибкого колеса со второй парой зубчатых секторов жесткого колеса, образующих с гибким колесом волновую зубчатую муфту, реализуется режим "выстоя" - выходное звено остается неподвижным. Таким образом, при непрерывном вращении входного звена реализуется дискретный режим вращения выходного звена.

Недостатками данного конструктивного решения являются высокие динамические нагрузки и интенсивный износ зубьев при переходе зоны зацепления зубьев гибкого колеса с зубьями жесткого колеса с одной пары секторов на другую, возникающие за счет разности угловых шагов зубьев секторов жесткого колеса. В этом случае мгновенное нагружение зубьев гибкого колеса снижает несущую способность и ресурс гибкого колеса и самой передачи.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является существенное снижение динамических нагрузок в зонах пересопряжения зубьев гибкого колеса на границах секторов жесткого колеса, снижение износа и повышение долговечности передачи.

Технический результат достигается тем, что в зонах контакта секторов жесткого зубчатого колеса зубья секторов волной муфты выполнены переменной высоты hi, которая определяется из условия отсутствия заклинивания зубьев гибкого и жесткого колес от упора вершин зубьев колес при входе в зацепление, что обеспечивает безударное сопряжение зубьев гибкого колеса при переходе волны деформации (зоны зацепления) с одного сектора жесткого колеса на другой.

Таким образом, волновая передача прерывистого действия содержит гибкое колесо, генератор вол и жесткое колесо, состоящее из четырех зубчатых секторов. Одинаковые зубчатые секторы расположены диаметрально противоположно, причем одна пара секторов при зацеплении с гибким колесом образует волновую зубчатую передачу, а другая - волновую зубчатую муфту. При этом в зонах сопряжения секторов зубья секторов волновой муфты имеют переменную высоту. Высота зубьев определяется из условия отсутствия заклинивания зубьев гибкого и жесткого колес от упора вершин зубьев колес при входе в зацепление в зависимости от угла поворота ϕh генератора волн.

Переменные значения высоты hi зубьев определены следующими математическими формулами и зависимостями:

где - окружность впадин жесткого колеса; raгi - окружность вершин деформированного гибкого колеса; rсг - радиус срединной линии недеформированного гибкого колеса; - радиальное перемещение точек срединной линии гибкого колеса; w0 - радиальная деформация гибкого колеса на большой оси деформации; , - расчетные коэффициенты [4]; β - половина угла облегания гибкого колеса генератором волн; hs - кратчайшее расстояние от срединной линии до вершины зуба гибкого колеса; ϕh - угол поворота генератора волн.

ПЕРЕЧЕНЬ ФИГУР

На фиг. 1 показан осевой разрез волновой передачи дискретного движения.

На фиг. 2 показан поперечный разрез волновой передачи дискретного движения.

На фиг. 3 показана расчетная схема для определения высоты зубьев.

На фиг. 4 показана конструкция соседних зубчатых секторов жесткого колеса.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На фиг. 1 показан осевой разрез волновой передачи дискретного движения. В корпусе 1 и крышке 2 установлено гибкое колесо 3 на подшипниках 7, выполненное в виде стакана и являющееся выходным звеном передачи; внутри колеса 3 расположен дисковый генератор волн, состоящий из дисков 4, закрепленных на эксцентриковом валу 5; жесткое колесо 6 закреплено в корпусе 1. Диски 4 генератора волн придают гибкому колесу 3 форму двухвершинного овала (фиг. 2). Жесткое колесо 6 выполнено составным из четырех зубчатых секторов 8, 9, 10 и 11. Пара секторов 8 и 9, расположенных диаметрально противоположно, выполнена одинаковыми и имеет зубчатые венцы с угловыми шагами зубьев, равными угловому шагу зубьев гибкого колеса 3. Другая пара секторов 10 и 11, также расположенных диаметрально противоположно, выполнена одинаковыми и имеет зубчатые венцы с угловыми шагами зубьев, отличными от углового шага зубьев гибкого колеса 3. Зубчатые секторы 8 и 9 жесткого колеса 6 в зонах сопряжения имеют зубья переменной высоты (фиг. 4).

Передача работает следующим образом. При вращении генератора волн гибкое колесо 3 в зацеплении с секторами 10 и 11 образует двухволновую передачу (выходное звено осуществляет движение), а в зацеплении с секторами 8 и 9 - волновую муфту (выходное звено неподвижно). Таким образом, выходное звено 3 осуществляет прерывистое движение. При прохождении генератором волн зоны сопряжения секторов за счет переменной высоты зубьев секторов муфты обеспечивается безударный переход волны деформации гибкого колеса 3 и тем самым обеспечивается безударное чередование режимов движения и "выстоя" выходного звена. Методика расчета высоты hi зубьев (фиг. 3) базируется на основных положениях классической теории эвольвентного зацепления, используя условие отсутствия заклинивания зубьев гибкого и жесткого колес от упора вершин зубьев колес при входе в зацепление в зависимости от угла поворота ϕh генератора волн [3].

В качестве примера в таблице 1 приведены значения высоты зубьев сектора волновой муфты жесткого колеса со следующими геометрическими параметрами волновой передачи дискретного движения: число зубьев сектора волновой муфты zм=21, число зубьев сектора волновой передачи zж=22, число зубьев гибкого колеса zг=86, модуль зацепления m=0,4 мм, половина угла облегания гибкого колеса генератором волн β=30°.

Источники информации

1. Костиков Ю.В., Тимофеев Г.А., Фурсяк Ф.И. Новое в проектировании волновых зубчатых передач // Известия высших учебных заведений. Машиностроение. 2012. №12. С. 42-49.

2. Шаговая волновая передача. А.с. СССР №1260598, кл. F16H 1/00, 27/04, опубл. 30.09.86 // БИ 1986. №36.

3. Тимофеев Г.А., Подчасов Е.О. Исследование заклинивания в зацеплениях несиловых волновых передач // Известия высших учебных заведений. Машиностроение. 2016. №4. С. 16-21.

4. Шувалов С.А., Волков А.Д. Деформация гибкого зубчатого колеса волновой передачи двумя дисками // Известия высших учебных заведений. Машиностроение. 1971. №10. С. 44-49.

1. Жесткое колесо волновой передачи дискретного движения, состоящее из двух пар зубчатых секторов, одинаковых и диаметрально противоположно расположенных, причем одна пара зубчатых секторов образует с гибким колесом волновую передачу, а другая пара секторов - волновую зубчатую муфту, отличающееся тем, что в локальных областях относительно граничных линий между секторами жесткого колеса зубья секторов волновой муфты имеют переменную высоту hi, определяемую из условия отсутствия заклинивания зубьев гибкого и жесткого колес от упора вершин зубьев колес при входе в зацепление в зависимости от угла поворота ϕh генератора волн.

2. Жесткое колесо волновой передачи дискретного движения по п. 1, отличающееся тем, что переменные значения высоты hi зубьев определены следующими математическими формулами и зависимостями:

где - окружность впадин жесткого колеса; rагi - окружность вершин деформированного гибкого колеса; rсг - радиус срединной линии недеформированного гибкого колеса; - радиальное перемещение точек срединной линии гибкого колеса; w0 - радиальная деформация гибкого колеса на большой оси деформации; - расчетные коэффициенты; β - половина угла облегания гибкого колеса генератором волн; hs - кратчайшее расстояние от срединной линии до вершины зуба гибкого колеса; ϕh - угол поворота генератора волн.



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности - к деталям машин, и может быть использовано при изготовлении крупномодульных зубчатых колес. Для изготовления зубчатого колеса включают изготовление заготовки, преимущественно из стали, в виде диска, по окружности которого впоследствии будут нарезаны зубья зубчатого венца колеса с технологическим припуском по наружному периметру диска.

Изобретение относится к машиностроению, а более конкретно к зубчатым передачам с колесами большого диаметра и с широкими зубчатыми венцами. Зубчатое колесо содержит ступицу, тело в виде диска и венцовое колесо с зубчатым венцом, ширина которого больше толщины диска тела.

Изобретение относится к механическим передачам и может быть использовано в составе изделий электронного машиностроения, в других отраслях промышленности, использующих волновые передачи с малыми габаритно-массовыми характеристиками, плавной и бесшумной работой.

Изобретение относится к машиностроению, а именно к механическим передачам, и может быть использовано в голографии, в авиации, в космических кораблях и станциях для точного поворота на заданный произвольный угол, для непрерывного вращения вокруг горизонтальной или вертикальной оси и перемещения с особо высокой точностью, высоким передаточным числом и малыми габаритно-массовыми характеристиками.

Изобретение относится к области машиностроения и может быть использовано в реверсивных пространственных зацеплениях между ортогональными пересекающимися осями для передачи вращения и крутящего момента.

Изобретение относится к машиностроению и может быть использовано в пространственных зацеплениях между ортогональными пересекающимися осями для передачи вращения и крутящего момента.

Изобретение относится к области машиностроения и может быть использовано в редукторостроении. .

Изобретение относится к машиностроению и может быть использовано при проектировании консольных реечно-шестеренчатых передач при больших нагрузках и скоростях рейки.

Изобретение относится к трансмиссиям или к выключаемым муфтам. Способ смещения осей универсальной самоцентрирующейся системы предназначен при использовании динамических свойств универсальной самоцентрирующейся системы.

Изобретение относится к гибридным транспортным средствам. Электрическая архитектура гибридного автотранспортного средства содержит двигатель, генератор для зарядки бортовой батареи низкого напряжения, связанной со стартером двигателя и с бортовой сетью транспортного средства; тяговую электрическую машину, получающую питание от тяговой батареи высокого напряжения, и гибридную трансмиссию.

Изобретение относится к области машиностроения, а более конкретно к электромеханическому приводу. Устройство для получение вращательного движения содержит корпус, выходной вал, установленный в опорах, два гибких деформируемых колеса волновой передачи, два составных двухволновых пьезогенератора волн деформации, деформирующие гибкие зубчатые или фрикционные колеса и рычаги.

Изобретение относится к планетарным вариаторам. Планетарный вариатор содержит сателлит, выполненный в виде кольца с внутренним и внешним расположением зубьев.

Изобретение относится к гибридным транспортным средствам. Гибридная трансмиссия для автотранспортного средства содержит два концентричных первичных вала, соединенные с двигателем и электрической машиной.

Изобретение относится к системе передач для транспортного средства. Система (1) передач имеет вход (3), соединенный с приводом E, и выход (5), соединенный с нагрузкой L.

Изобретение относится к трансмиссии транспортного средства. Трансмиссия содержит первый и второй вращающиеся валы, первую и вторую пару находящихся в зацеплении зубчатых колес, каждая из которых содержит холостую шестерню, установленную с возможностью вращения на втором валу, один синхронизатор, выполненный с возможностью смещения вдоль второго вала между первым и вторым положениями зацепления, в которых он фиксирует одну из холостых шестерен на втором валу посредством нейтрального положения и гидравлический привод для смещения синхронизатора.

Изобретение относится к машиностроению, в частности к бесступенчатым передачам движения, которые обеспечивают плавное и непрерывное изменение силового и кинематического передаточного отношения.

Изобретение относится к механизмам автоматического переключения передач в зависимости от момента нагрузки ведомого вала. .

Изобретение относится к трансмиссии транспортных средств и может быть использовано для остановки паркуемого транспортного средства. .

Изобретение относится к приводам авиационных и робототехнических систем. Шаговый привод содержит двигатель, редуктор, систему управления.
Наверх