Способ охлаждения афар

Изобретение относится к области радиолокационной техники. Для охлаждения активной фазированной антенной решетки (АФАР) в промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей, размещено две трубы, по существу, эллиптического поперечного сечения. В трубы в противоположных направлениях подводится охлажденная жидкая среда. Каждая из труб выполнена из материала, имеющего возможность упругой деформации под давлением жидкой среды, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, с толщиной стенки, по меньшей мере, в зоне прижатия составляющей от 0,2 до 0,35 мм. Циркуляция жидкой среды осуществляется со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб и средней температурой охлажденной жидкой среды от 3 до 5°C. Технический результат состоит в обеспечении интенсивного равномерного отведения тепла с поверхностей корпусов приемо-передающих модулей, входящих в состав АФАР, и, следовательно, в интенсивном охлаждении АФАР в целом при ее эксплуатации. 2 ил.

 

Изобретение относится к области радиолокационной техники и может быть использовано при проектировании и изготовлении активной фазированной антенной решетки (АФАР).

В настоящее время используются различные способы охлаждения активных фазированных антенных решеток. Одним из таких способов, получившим широкое применение, является способ охлаждения, основанный на использовании испарительных систем охлаждения (см., например, Крахин О.И., Радченко В.П. «Проблема теплоотвода приемо-передающих модулей и АФАР с высоким уровнем теплового излучения», III Всероссийская конференция «Радиолокация и радиосвязь» - ИРЭ РАН, 26-30 октября 2009).

Недостатки известного способа состоят в сложности его реализации.

Кроме этого, известны способы охлаждения активных фазированных антенных решеток, включающие размещение охлаждающих средств, имеющих каналы, в контакте с внешней поверхностью стенки корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, и осуществление циркуляции в каналах жидкой среды. В известных способах в качестве охлаждающих средств, как правило, используют жидкостные панели (см., например, Савенко В.А. «Унификация конструкторских решений для построения приемо-передающих модулей АФАР различных диапазонов», Электроника и микроэлектроника СВЧ, Всероссийская конференция, Санкт-Петербург, 3-6 июня 2013).

Недостатки известных способов состоят в том, что при их реализации не обеспечивается интенсивное равномерное отведение тепла с поверхности корпусов приемо-передающих модулей, входящих в состав АФАР.

Подобный способ принят в качестве ближайшего аналога заявленного способа.

Задачей заявленного изобретения является создание способа охлаждения активной фазированной антенной решетки, лишенного указанных недостатков.

В результате достигается технический результат, заключающийся в обеспечении интенсивного равномерного отведения тепла с поверхностей корпусов приемо-передающих модулей, входящих в состав АФАР, и, следовательно, интенсивного охлаждения АФАР в целом при ее эксплуатации.

Конкретно, указанный технический результат достигается посредством осуществления способа охлаждения активной фазированной антенной решетки (АФАР), включающего размещение охлаждающих средств, имеющих каналы, в контакте с внешней поверхностью стенки корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, и осуществление циркуляции в каналах жидкой среды. В промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей, размещают две трубы, по существу, эллиптического поперечного сечения. В трубы в противоположных направлениях подводят охлажденную жидкую среду. Каждую из труб выполняют из материала, имеющего возможность упругой деформации под давлением жидкой среды, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей с толщиной стенки, по меньшей мере, в зоне прижатия составляющей от 0,2 до 0,35 мм. Циркуляцию жидкой среды осуществляют со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб и средней температурой охлажденной жидкой среды от 3 до 5°C.

Применение зазора, меньшего чем 0,1 мм, ограничено конструкцией АФАР.

Применение зазора, большего чем 0,5 мм, уменьшает площадь прижатия каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР (поскольку требует применения повышенного давления жидкой среды, что ограниченно прочностными свойствами трубы и характеристиками нагнетающего оборудования, например насоса), что, в свою очередь, ухудшает теплопередачу между стенкой корпуса и жидкой средой.

Использование труб с толщиной стенки, меньшей чем 0,2 мм, вызывает риск ее механических повреждений при эксплуатации АФАР, а также повышение напряжений в ней при ее деформации под давлением жидкой среды, что, в свою очередь, может привести к нарушению ее герметичности.

Использование труб с толщиной стенки, большей чем 0,35 мм, уменьшает ее способность к упругой деформации и, следовательно, уменьшает площадь прижатия каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, что, в свою очередь, ухудшает теплопередачу между стенкой корпуса и жидкой средой.

На фиг. 1 показано схематичное изображение приемо-передающих модулей, входящих в состав каждого ряда АФАР, в контакте с трубами, по существу, эллиптического поперечного сечения (вид сверху).

На фиг. 2а и 2b показана труба, по существу, эллиптического сечения, соответственно, до и после деформации под давлением жидкой среды.

Заявленный способ реализуют, например, следующим образом.

Каждый из приемо-передающих модулей 1а-1с содержит тепловыделяющие элементы (в частности, транзисторы), в результате чего при эксплуатации АФАР внешняя поверхность боковых стенок корпуса каждого из приемо-передающих модулей 1a-1d нагревается до температуры, достигающей 70°C.

Для отведения тепла в промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей 1a-1d, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм (например, 0,1 мм), в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей 1а-1с, размещают две трубы 2а и 2b.

В трубы 2а и 2b (из раздающего коллектора 3а) в противоположных направлениях подводят охлажденную жидкую среду, в частности раствор этиленгликоля.

Отведение из труб 2а и 2b нагретой (в результате отведения тепла от корпусов приемо-передающих модулей 1a-1d) жидкой среды осуществляют при помощи собирающего коллектора 3b.

Циркуляцию жидкой среды осуществляют посредством насоса (не показан), создающего давление в жидкостном тракте, достаточное для компенсации потерь на трение, местных потерь и обеспечения необходимой скорости потока жидкой среды.

Каждую из труб 2а и 2b выполняют из материала, имеющего возможность упругой деформации под давлением жидкой среды (например, из нержавеющей стали 12Х18Н10Т), обеспечивающей ее прижатие к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей 1a-1d, одной из своих сторон, с толщиной стенки, по меньшей мере, в зоне прижатия, составляющей от 0,2 до 0,35 мм (например, 0,2 мм). Другой стороной каждая из труб 2а и 2b оказывается прижатой к элементу несущей конструкции полотна АФАР.

Циркуляцию охлажденной жидкой среды осуществляют со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб 3 и средней температурой охлаждающей жидкой среды от 3 до 5°C (данные значения получены в результате известных теплотехнических расчетов, которые приведены, например, в книге Кутателадзе С.С. «Теплопередача и гидродинамическое сопротивление: Справочное пособие», Москва, «Энергоатомиздат», 1990).

Нагретую охлаждающую жидкую среду охлаждают, например, при помощи воздушной системы охлаждения с использованием атмосферного воздуха (в качестве такой системы может быть использована система, основанная на воздушном радиаторе).

Способ охлаждения активной фазированной антенной решетки (АФАР), включающий размещение охлаждающих средств, имеющих каналы, в контакте с внешней поверхностью стенки корпуса каждого из приемо-передающих модулей, входящих в состав АФАР, и осуществление циркуляции в каналах жидкой среды, отличающийся тем, что в промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей, размещают две трубы, по существу, эллиптического поперечного сечения, в которые в противоположных направлениях подводят охлажденную жидкую среду, при этом каждую из труб выполняют из материала, имеющего возможность упругой деформации под давлением жидкой среды, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, с толщиной стенки, по меньшей мере, в зоне прижатия составляющей от 0,2 до 0,35 мм, а циркуляцию жидкой среды осуществляют со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб и средней температурой охлажденной жидкой среды от 3 до 5°C.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть применено при одновременном измерении двух угловых координат (УК) цели в системах моноимпульсной радиолокации и радиопеленгации.

Изобретение относится к области антенной техники. Особенностью заявленной волноводно-щелевой антенной решетки резонансного типа является то, что распределительная система в подрешетке выполнена на развязанных неравновесных делителях мощности, представляющих собой модифицированные двойные Т-мосты с повернутыми носиками Г-образных элементов, а связь распределительной системы с излучающими волноводами осуществляется через гантельные щели в общей широкой стенке.

Изобретение относится к электронным средствам связи и радиолокационным системам. Заявлены фазированная антенная решетка и система связи, содержащая данную антенную решетку; причем особенностью указанной антенной решетки является то, что антенная подрешетка в горизонтальной проекции имеет треугольную форму, а излучающие элементы расположены в треугольной решетке на указанной основе из пеноматериала, причем антенная решетка содержит множество целых шестиугольных панелей, каждая из которых собрана из шести треугольных блоков подрешетки, и множество половинок шестиугольных панелей, причем целые шестиугольные панели и половинки шестиугольных панелей расположены так, что образуют плотно упакованный антенный блок.

Изобретение относится к сверхвысокочастотной радиотехнике. Особенностью заявленной антенной решетки с частотным сканированием является то, что антенная решетка выполнена в виде трех механически сочленяемых плит, в первой и с одной стороны второй плитах методом фрезерования на глубину в полширины волноводного канала выполнены каналы змейкового волновода, а с другой стороны второй и третьей плитах - каналы волноводно-щелевых линеек, электрическая связь змейкового волновода с волноводно-щелевыми линейками осуществляется через элементы связи волноводных каналов направленных ответвителей в общей узкой стенке двух волноводов, причем элементы связи в направленных ответвителях выполнены в виде наклонных щелей, а щелевые излучатели в линейках выполнены в виде прямых щелей, возбуждаемых U-образными проводниками полуволновой длины.

Изобретение относится к радиотехнике и может использоваться для приёма широкополосных сигналов, например, в системе сбора телеметрической информации от бортовой аппаратуры космических аппаратов.

Изобретение относится к вибраторным фазированным антенным решеткам. Особенностью заявленной антенной системы является то, что вторая линейка вибраторов, расположенных под первой линейкой на расстоянии d=λср/2 от нее, состоит из n отдельных симметричных направленных антенн, выполненных в виде полотен, параллельных поверхности земли, из комбинации плоскостных вибраторов, равнобедренной треугольной рамки с протяженностью периметра, равной λср/n, с размещением основания треугольника под первой линейкой, параллельно оси первой линейки, с проводниками боковых сторон, направленными в обратную сторону от направления приемопередачи, и размещенного под первым пассивным рефлектором шлейф-вибратора длиной λср/2n, повернутого точками питания в направлении основания треугольника, на расстоянии λср/4 от него и подключенного к нему перекрещенными при коммутации проводниками боковых сторон рамки.

Изобретение относится к области радиотехники и может быть использовано в приемопередающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки.

Изобретение относится к области радиотехники и может быть использовано в приемо-передающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки.

Изобретение относится к технике сверхвысокой частоты (СВЧ) и предназначено для использования в фазированной антенной решетке (ФАР) проходного типа с круговой поляризацией К-диапазона в качестве управляющего элемента.

Изобретение относится к области антенной техники, в частности к антенным решеткам и системам. Целью настоящего изобретения является улучшение параметров ДН двухдиапазонной антенной решетки с одновременным достижением большей простоты и компактности конструкции.

Изобретение относится к области приемопередающих антенных решеток наклонной поляризации для ретрансляторов связи. Особенностью заявленной приемопередающей антенной решетки модуля позиционирования и дальней связи мобильного многофункционального аппаратно-программного комплекса длительного кардиомониторирования и эргометрии является то, что все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N пары. Техническим результатом является расширение рабочего сектора углов в плоскости антенной решетки и обеспечение работы ретранслятора на наклонной и круговой поляризации электромагнитных волн. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области приемопередающих антенных решеток наклонной поляризации для ретрансляторов связи. Особенностью заявленной антенной решетки наклонной поляризации модуля позиционирования и дальней связи мобильного многофункционального аппаратно-программного комплекса длительного кардиомониторирования и эргометрии является то, что все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N пары. Техническим результатом является расширение рабочего сектора углов в плоскости антенной решетки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в составе радиолокационных станций. Способ формирования круговой зоны электронного сканирования цилиндрической фазированной антенной решетки, основан на размещении на ее поверхности излучателей, объединенных по образующей цилиндра в эквидистантно расположенные линейки излучателей, формирующие одинаковые диаграммы направленности, определении размеров углового сектора расположения линеек излучателей, излучении плоского поля путем электронного управления фазовым сдвигом сигналов, проходящих через излучатели. Для достижения возможности формирования круговой зоны электронного сканирования цилиндрической ФАР в азимутальной плоскости с возможностью управления относительным (к максимуму ДН) уровнем максимальных боковых лепестков при любом направлении луча, выделяют внутри углового сектора активные линейки излучателей, подводя к ним сигнал посредством электронного включения, а для синфазного сложения излученных полей в направлении луча антенны изменяют фазы сигналов, подводимых к активным линейкам излучателей, на величины где i - номера активных линеек излучателей (i>0); λ - длина волны в среде распространения излученного поля; R - радиус цилиндра; ϕ0 - направление луча антенны в азимутальной плоскости; ϕi - угловое положение i-ой активной линейки излучателей в азимутальной плоскости; ψi - начальная фаза сигнала, подводимого к i-ой активной линейке излучателей. 3 ил.

Изобретение относится к радиоэлектронной аппаратуре и может применяться в антенной технике в качестве полотна антенного фазированной антенной решетки (ФАР). Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является расширение функциональных возможностей, упрощение конструкции, точность позиционирования и надежность крепления большого количества элементов ФАР. Полотно антенное содержит основание и элементы фазированной антенной решетки, соединенные с основанием. Новым является выполнение основания в виде несущей рамы 1 с закрепленной на ней крышкой, выполненной в виде совокупности плоских пластин 2 прямоугольного сечения, причем попарно сопряженных между собой боковыми стенками и оси которых параллельны, причем на боковых стенках пластин 2 выполнены пазы, перпендикулярные оси пластин, образующие после объединения пластин установочные отверстия, расположение которых соответствует расположению установочных отверстий, выполненных в несущей раме 1, причем в установочных отверстиях несущей рамы 1 и пластин 2 закреплены элементы 4 ФАР. 6 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике. Устройство для беспроводной связи, содержащее: антенный модуль миллиметрового диапазона, содержащий по меньшей мере два антенных элемента, корпус, включающий в себя проводящие структуры с апертурой для согласования антенного модуля с внешним пространством. Причем антенный модуль миллиметрового диапазона изолирован от свободного пространства корпусом, электромагнитное поле излучается в свободное пространство через проводящие структуры корпуса. Технический результат заключается в повышении производительности и устойчивости антенн миллиметрового диапазона для мобильных устройств с металлической рамкой посредством точного формирования решетки волноводных возбудителей в PCB и гибкого соединения этих волноводных возбудителей с нерезонансными излучающими апертурами мобильного устройства. 13 з.п. ф-лы, 19 ил., 3 табл.

Изобретение относится к области радиотехники и может быть использовано при разработке устройств для излучения радиоволн преимущественно дециметрового и более длинноволнового диапазона электромагнитных волн. Способ возбуждения электромагнитных волн заключается в том, что каждый период гармонического колебания разбивается на N импульсов прямоугольной формы одинаковой амплитуды, сумма которых воспроизводит гармонический сигнал. При этом каждый импульс формируется одним из N активных элементов, работающих в ключевом режиме, а каждый активный элемент нагружен на один из N пассивных излучающих элементов. Техническим результатом является снижение габаритов излучающего устройства по сравнению с габаритами существующих антенн. 3 ил.

Изобретение относится к технике измерений ФАР с большим числом N элементов и может применяться для их диагностики при частичном или полном отказе устройства управления фазой части излучателей тестируемой ФАР в процессе разработки, изготовления, настройки и эксплуатации ФАР. При решении задачи диагностики используют данные комплексных амплитуд токов (или напряжений) возбуждения излучателей и данные измерений, полученных в тех же точках БЗ при излучении сигналов бездефектной опорной ФАР, размещаемой на месте тестируемой ФАР и конструктивно полностью совпадающей с ней. Затем формируют функцию разности комплексных амплитуд возбуждения излучателей новой разреженной ФАР и функцию разности комплексных напряжений, регистрируемых на выходе зонда в точках проведенных измерений. В прототипе на основе знания характеристик новой разреженной ФАР, последующего формирования и минимизации целевой функции определяют с приемлемой вероятностью, зависящей от уровня ошибок измерения и аддитивного шума, координат всех излучателей тестируемой ФАР, ряд потенциально дефектных (ПД) излучателей, которые могут быть включены в группу рабочих или дефектных излучателей. Предлагаемый способ диагностики позволяет на основе дополнительных измерений неподвижным зондом определить фазу любого из ПД излучателей тестируемой ФАР путем изменения его фазы возбуждения на 180°. Техническим результатом предлагаемого изобретения является повышение достоверности, увеличение точности и создание новых функциональных возможностей при диагностике тестируемой ФАР по сравнению с прототипом, реализуемых на основе определения ошибки установки фаз или полного отказа устройства управления фазой в любом ПД или дефектном излучателях тестируемой ФАР, создание эффективного критерия классификации ПД излучателей тестируемой ФАР на рабочие и заведомо дефектные. 6 ил.

Изобретение относится к антенной технике и может быть использовано при создании антенных систем во вторичной радиолокации. Антенная система вторичного радиолокатора состоит из основной антенны канала запроса, антенны канала подавления боковых лепестков, установленной вне основной антенны канала запроса. Также введено устройство, обеспечивающее электрическую связь основной антенны и антенны канала подавления боковых лепестков. Технический результат заключается в уменьшении уровня боковых лепестков, ширины основного луча ДН антенны канала, повышении темпа обзора, увеличении точности определения угловых координат летательного аппарата при сохранении небольших массогабаритных показателей антенной системы. 1 з.п. ф-лы, 6 ил.

Изобретение относится к радиолокации, а именно к способам формирования диаграммы направленности цифровыми антенными решетками при обзоре пространства и земной поверхности, и может быть использовано в радиолокационных станциях (РЛС). Технической проблемой, решаемой предлагаемым изобретением, является расширение функциональных возможностей антенны. А техническим результатом предлагаемого изобретения является повышение коэффициента усиления антенны на прием. Способ основан на том, что формируют подрешетками цифровой антенной решетки (ЦАР) передающую диаграмму направленности антенны (ДНА) вида cosec2 по углу места и игольчатую по азимуту и излучают зондирующий сигнал. Для достижения технического результата осуществляют прием отраженного сигнала каждой подрешеткой ЦАР, формируют приемную многолучевую ДНА по углу места и игольчатую по азимуту посредством цифрового диаграммообразования таким образом, что ее лучи по углу места перекрывают по ширине передающую ДНА cosec2, формируют массив комплексных амплитуд отраженных сигналов, принятых по каждому лучу ДНА. 3 ил.

Изобретение относится к антенной технике и может быть использовано в качестве наземной передающей и/или приемной антенны с эллиптической (круговой) поляризацией. Антенна содержит четыре одинаковых симметричных вибратора, установленные на опоре-мачте и наклоненные на одинаковый угол по отношению к плоскости. Каждый симметричный вибратор содержит излучатель, симметрирующее устройство и коаксиальный кабель. Излучатель выполнен из двух одинаковых соосных проводников, между которыми имеется зазор. Симметрирующее устройство выполнено в виде короткозамкнутой двухпроводной линии и включает в себя два одинаковых параллельных проводника, которые присоединены с одной стороны к проводникам излучателя в зазоре, а с другой стороны объединены закорачивающим третьим проводником, который присоединен к опоре-мачте. Коаксиальный кабель присоединен своим внешним проводником к одному из проводников излучателя в зазоре, а своим внутренним проводником присоединен ко второму проводнику излучателя в зазоре. В каждый симметричный вибратор введен дополнительный проводник Г-образной формы, который расположен между параллельными проводниками двухпроводной линии. Длинное плечо дополнительного проводника Г-образной формы ориентировано вдоль двухпроводной линии. Между одним концом длинного плеча дополнительного проводника Г-образной формы и закорачивающим проводником двухпроводной линии имеется зазор. Второй конец длинного плеча дополнительного проводника Г-образной формы соединен с одним из параллельных проводников двухпроводной линии с помощью короткого плеча дополнительного проводника Г-образной формы. Технический результат - достижение малого уровня осцилляций ДН поля антенной решетки с эллиптической поляризацией в горизонтальной плоскости при обеспечении низкого уровня КСВН на входе антенны. 4 ил.

Изобретение относится к области радиолокационной техники. Для охлаждения активной фазированной антенной решетки в промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей, размещено две трубы, по существу, эллиптического поперечного сечения. В трубы в противоположных направлениях подводится охлажденная жидкая среда. Каждая из труб выполнена из материала, имеющего возможность упругой деформации под давлением жидкой среды, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, с толщиной стенки, по меньшей мере, в зоне прижатия составляющей от 0,2 до 0,35 мм. Циркуляция жидкой среды осуществляется со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб и средней температурой охлажденной жидкой среды от 3 до 5°C. Технический результат состоит в обеспечении интенсивного равномерного отведения тепла с поверхностей корпусов приемо-передающих модулей, входящих в состав АФАР, и, следовательно, в интенсивном охлаждении АФАР в целом при ее эксплуатации. 2 ил.

Наверх