Устройство для кардиографического контроля состояния пациентов

Изобретение относится к медицинской технике. Устройство для кардиографического контроля состояния пациентов содержит монитор, интерфейс, ЭКГ-электроды для снятия с тела пациента электрокардиографических сигналов, соединенные выходом с входом блока первичной обработки сигналов, другой вход этого блока соединен с выходом блока временной дискретизации, а выход блока первичной обработки сигналов соединен с блоком коммутации каналов. Выходы блока коммутации каналов соединены с блоком дискретного преобразования Фурье, на выходе которого присутствуют значения амплитуды, частоты и фазы гармоник исследуемого сигнала, и с блоком ввода данных о пациенте. Гармоники обрабатываются в фиксаторе кардиограмм, который запоминает и выдает на выходе амплитуды гармоник исследуемого сигнала необходимое количество времени. Амплитуды гармоник поступают в определитель образа кардиограммы, который сравнивает полученный образ от ЭКГ-электрода с учетом доверительных интервалов и определенной степенью надежности с образами из базы образов кардиограмм. Выход определителя соединен с входом блока фиксации состояний и анализа их динамики, где по данным образов кардиограмм от всех ЭКГ-электродов формируется диагноз болезни пациента путем сравнения набора образов кардиограмм от ЭКГ-электродов с набором, характеризующим диагноз болезни из базы кардиологических диагнозов с учетом доверительных интервалов и определенной степенью надежности. В этом же блоке определяется степень надежности диагноза, динамика диагноза в зависимости от предыдущего исследования пациента, время определения диагноза. Данные выводятся на монитор, передаются в интерфейс для хранения и исследования на других технических средствах и в блок ввода данных о пациенте, где они хранятся в соответствующих архивах пациента. Достигается повышение точности оценки кардиологического состояния пациента и более качественное определение параметров конкретной болезни, а также увеличится скорость диагностирования. 2 з.п. ф-лы, 14 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области медицины и предназначено для диагностики кардиологических заболеваний у пациентов в различных условиях (клинические больницы, фельдшерские пункты, автомобили скорой помощи и другие условия).

Уровень техники

Известно устройство компьютерный кардиограф с программой EASY ECG REST, содержащее моноблок с программой, подключенный ЭКГ модуль ATES EASY ECG, лазерный принтер, блок автономного питания, съемный кабель пациента, многоразовые ЭКГ-электроды. Данное устройство обеспечивает качественное воспроизведение на мониторе 12-канальной записи кардиограмм, печатание их на принтере и хранение на электронных носителях. Недостатком данного устройства является отсутствие диагностических функций, что снижает область использования устройства, так как для расшифровки кардиограмм привлекается профессиональный врач узкого профиля.

Также известно устройство Кардиограф CardiMax FX-8322 (режим доступа: http://eurosmed.ru/products/kardiograf-cardimax-fx-8322?variant=3085), содержащее дисплей 6,4'', принтер рулонный 210 мм и вспомогательные принадлежности. Данное устройство также обеспечивает качественное воспроизведение на мониторе 12-канальной записи кардиограмм, печатание их на принтере и хранение на электронных носителях. И недостатком данного устройства является отсутствие диагностических функций, что снижает область использования устройства, так как для расшифровки кардиограмм привлекается профессиональный врач узкого профиля.

Наиболее близким по технической сущности и достигаемому при использовании техническому результату (прототипом для устройства) является устройство Электрокардиограф BTL-08 LT Plus ECG (режим доступа: http://teh-med.ru/elektrokardiograf_btl_08). Это 12-канальный электрокардиограф с цветным сенсорным дисплеем 5.7'' и печатью A4, содержащий цветной сенсорный дисплей для удобного применения; 210 мм печать ЭКГ на бумаге (рулон, факс, A4); с возможностями прямой печати на лазерном принтере - через порт USB, без использования компьютера; определение кардиостимулятора и подключение к компьютерной базе данных и стрессовой системе. И недостатками данного устройства также являются слабые диагностические функции и необходимость постоянно привлекать профессионального врача-кардиолога для расшифровки кардиограмм.

Сущность изобретения

Задачей технического решения изобретения является расширение области применения устройства для кардиографического контроля состояния пациентов. Техническое решение изобретения простое в изготовлении и эксплуатации, позволяющее быстро и однозначно определять состояние исследуемого пациента и самостоятельно регистрировать и характеризовать новые неизвестные состояния болезней.

Поставленная задача решается благодаря тому, что в состав известного устройства кардиологического контроля состояния пациентов, содержащего ЭКГ-электроды, монитор, принтер, интерфейс, добавлены блок временной дискретизации, блок первичной обработки сигналов, блок коммутации каналов, блок фиксации фазы, блок дискретного преобразования Фурье, блок фиксации частоты, блок ввода данных о пациенте, фиксатор кардиограммы, база образов кардиограмм, определитель образа кардиограммы, блок обратного преобразования Фурье, блок фиксации состояний и анализа их динамики, база кардиологических диагнозов.

Техническим результатом, на который направлено данное изобретение, является повышение точности оценки кардиологического состояния пациента и более качественное определение параметров конкретной болезни, а также снижение стоимости и увеличение скорости диагностирования болезней.

Отличительным признаком является то, что устройство кардиологического контроля состояния пациентов содержит базу образов состояния, где хранятся данные образов (амплитуд гармоник сигналов после преобразования Фурье снятых с ЭКГ-электродов) как минимум с тремя доверительными интервалами для надежности оценки 0,99, 0,95 и 0,9 с характеристиками частоты и фазы каждой гармоники. После определения состояния пациента на экране монитора появятся три вида кривых каждого канала измерения: кривая, снятая с ЭКГ-датчиков пациента; кривая верхнего уровня доверительного интервала и кривая нижнего уровня доверительного интервала.

Техническое решение позволяет создать простое, надежное, оперативное устройство для диагностики и контроля кардиологического состояния пациента.

Техническая сущность предложенного технического решения поясняется чертежами, на которых:

Фиг. 1. Структурная схема устройства.

Фиг. 2. Структурная схема блока временной дискретизации.

Фиг. 3. Структурная схема блока первичной обработки сигналов.

Фиг. 4. Структурная схема блока коммутации каналов.

Фиг. 5. Структурная схема блока фиксации фазы.

Фиг. 6. Структурная схема блока дискретного преобразования Фурье.

Фиг. 7. Структурная схема блока фиксации частоты.

Фиг. 8. Структурная схема блока ввода данных о пациенте.

Фиг. 9. Структурная схема фиксатора кардиограммы.

Фиг. 10. Структурная схема базы образов кардиограмм.

Фиг. 11. Структурная схема определителя образа кардиограммы.

Фиг. 12. Структурная схема блока обратного преобразования Фурье.

Фиг. 13. Структурная схема блока фиксации состояний и анализа их динамики.

Фиг. 14. Структурная схема базы кардиологических диагнозов.

При анализе схем необходимо учитывать, что при перекрестном пересечении линии не сливаются и не расходятся, а при Т-образном пересечении линии либо сливаются, либо расходятся.

На фиг. 1 представлена структурная схема устройства.

Устройство для кардиографического контроля состояния пациента содержит блок 1 временной дискретизации, ЭКГ-электроды 2, устанавливаемые на исследуемом пациенте, блок 3 первичной обработки сигналов, блок 4 коммутации каналов, блок 5 фиксации фазы, блок 6 дискретного преобразования Фурье, блок 7 фиксации частоты, блок 8 ввода данных о пациенте, фиксатор 9 кардиограммы, базу 10 образов кардиограмм, определитель 11 образа кардиограммы, блок 12 обратного преобразования Фурье, блок 13 фиксации состояний и анализа их динамики, базу 14 кардиологических диагнозов, интерфейс 15, монитор 16.

На фиг. 2 представлена структурная схема блока 1 временной дискретизации.

Блок 2 временной дискретизации состоит из: генератора 17; делителя частоты 18; блока 19 формирования сигналов для блока 3; блока 20 формирования сигналов для блока 4; блока 21 формирования сигналов для блока 6; блока 22 формирования сигналов для блока 8; блока 23 формирования сигналов для блока 9; блока 24 формирования сигналов для блока 11. Вход 25 служит для запуска системы в работу. Выход 26 соединен с соответствующими входами блока 3; выход 27 соединен с соответствующими входами блока 4 коммутации каналов; выход 28 соединен с соответствующими входами блока 6 дискретного преобразования Фурье; выход 29 соединен с соответствующими входами блока 8 ввода данных о пациенте; выход 30 соединен с соответствующими входами фиксатора 9 кардиограмм; выход 31 соединен с соответствующими входами определителя 11 образа кардиограммы.

На фиг. 3 представлена структурная схема блока 3 первичной обработки сигналов.

Блок 3 первичной обработки сигналов состоит из: фильтров 32, 36, 40, 44, 48, 52 низких частот соответствующего диапазон, который удаляет составляющие, образованные источниками дефектов; усилителей-ограничителей 33, 37, 41, 45, 49, 53, которые наряду с усилением сигнала осуществляют его ограничение; аналогово-цифровых преобразователей (АЦП) АЦП-1 34, АЦП-2 38, АЦП-3 42, АЦП-4 46, АЦП-5 50, АЦП-6 54; оперативных запоминающих устройств (ОЗУ) ОЗУ-1 35, ОЗУ-2 39, ОЗУ-3 43, ОЗУ-4 47, ОЗУ-5 51, ОЗУ-6 55. Усилитель-ограничитель может быть любой (операционный или на транзисторах). Нормированный (фиксированный определенного уровня) сигнал подается в аналогово-цифровой преобразователь (АЦП). Все оцифрованные сигналы хранятся в ОЗУ. Как правило кардиографы состоят из 12 каналов, в данном же устройстве количество каналов может быть и 12, и 24 и т.д. Для наглядности описания представлено устройство с 6-ю каналами исследования кардиограмм пациента. Входы 58, 61, 64, 67, 70, 73 принимают сигналы по каждому каналу от ЭКГ-электродов, входы 56, 59, 62, 65, 68, 71 служат для управления АЦП, а входы 57, 60, 63, 66, 69, 72 служат для управления ОЗУ. Выходы 74, 75, 76, 77, 78, 79 соединены с входами блока 4 коммутации каналов.

На фиг. 4 представлена структурная схема блока 4 коммутации каналов.

Блок 4 коммутации каналов измерения состоит из мультиплексора 80, который выбирает сигналы какого канала в данный момент необходимо подавать на входы блока 6 дискретного преобразования Фурье и блока 8. На вход 81 поступают сигналы управления от блока 1 временной дискретизации, а на вход 82 поступают сигналы от блока 3 первичной обработки сигналов. Выход 83 соединен с входом блока 6 дискретного преобразования Фурье, а выход 84 соединен с входом блока 8 ввода данных о пациенте.

На фиг. 5 представлена структурная схема блока 5 фиксации фазы.

Блок 5 фиксации фазы состоит из регистра 85 сигналов фазы, на входы 86 которого поступают сигналы от блока 6, а с выходов 87 сигналы поступают в определитель 11 образа кардиограммы.

На фиг. 6 представлена структурная схема блока 6 дискретного преобразования Фурье.

Блок 6 дискретного преобразования Фурье состоит из: регистра-1 88; преобразователя 89 Фурье, который может использоваться серийного изготовления с выходами не менее чем для 11-й гармоники; регистра-2 90. Регистр-1 служит для хранения входных сигналов, поступающих на его вход 91 от блока 4 коммутации каналов, а регистр-2 служит для хранения выходных сигналов. На входы 92, 93, 94 поступают сигналы управления от блока 1 временной дискретизации. Сигналы от регистра-2 со значениями полученных амплитуд гармоник с выхода 95 поступают в фиксатор 9 кардиограммы, с выхода 96 сигналы со значениями фаз гармоник поступают в блок 5 фиксации фазы, а с выхода 97 сигналы со значениями частот гармоник поступают в блок 7 фиксации частоты.

На фиг. 7 представлена структурная схема блока 7 фиксации частоты.

Блок 7 фиксации частоты состоит из регистра 98 сигналов частоты, на входы 99 которого поступают сигналы от блока 6, а с выходов 100 сигналы поступают в определитель 11 образа кардиограммы.

На фиг. 8 представлена структурная схема блока ввода данных о пациенте.

Блок 8 ввода данных о пациенте состоит из клавиатуры 101, постоянного запоминающего устройства с идентификаторами пациентов (ПЗУ-1 с id) 102, базы 103 данных кардиограмм пациентов. Вход 104 служит для записи необходимых данных от интерфейса 15, вход 107 от блока 4 служит для записи кардиограмм исследуемого пациента, а вход 108 служит для синхронизации записи кардиограммы, которая осуществляется блоком 1. Выход 105 соединен с входом блока 1, выходы 106, 109 соединены с монитором 16, где отображаются данные о пациенте и его кардиограммы, а выход 110 соединяется с блоком 13 фиксации состояний и анализа их динамики.

На фиг. 9 представлена структурная схема фиксатора 9 кардиограммы.

Фиксатор 9 кардиограммы состоит из регистра 111 сигналов с количеством разрядов, равным количеству выходных разрядов для одной гармоники, умноженных на количество исследуемых гармоник, регистра 112 каналов, в данном примере их 6, и формирователя 113 сигнала «Начало анализа». Входы 114 подключены к выходам блока 6 дискретного преобразования Фурье, а вход 115 с сигналом записи в регистр 111 поступает от блока 1 временной дискретизации. Вход 116 с сигналом записи в регистр 112, входы 117, содержащие код номера исследуемого канала, и вход 118 с сигналом окончания записей в регистры 111, 112 соединены соответственно с блоком 1 временной дискретизации. Выходы 119, 120 подключены к входам определителя 11 образа кардиограммы. По сигналу окончания записей в регистры 111, 112 формирователь 113 сигнала «Начало анализа» формирует сигнал «Начало анализа» состояния, который с выхода 121 поступает также на вход определителя 11 образа кардиограммы.

На фиг. 10 представлена структурная схема базы 10 образов кардиограмм.

База 10 образов кардиограмм состоит из: блока 122 ввода новых значений амплитуд известной кардиограммы (при режиме корректировки данных); блока 123 ввода новых значений амплитуд известной кардиограммы (при режиме загрузки данных); блока 124 запуска необходимой выборки данных из базы 125 данных, которая в свою очередь состоит из базы 126 данных верхних значений амплитуд гармоник для доверительного интервала с надежностью 0,99 (множество B1); базы 127 данных нижних значений амплитуд гармоник для доверительного интервала с надежностью 0,99 (множество В2); базы 128 данных верхних значений амплитуды гармоник для доверительного интервала с надежностью 0,95 (множество C1); базы 129 данных нижних значений амплитуды гармоник для доверительного интервала с надежностью 0,95 (множество С2); базы 130 данных верхних значений амплитуды гармоник для доверительного интервала с надежностью 0,9 (множество D1); базы 131 данных нижних значений амплитуды гармоник доверительного интервала с надежностью 0,9 (множество D2); блока 132 вывода данных для анализа; входами 133, 134 от интерфейса 15, входами 135, 136, 137, 138, 139, 140, 141, 142 от определителя 11 образа кардиограммы и выходами 143, 144, 145, 146, 147, 148 в определитель 11 образа кардиограммы.

На фиг. 11 представлена структурная схема определителя 11 образа кардиограммы.

Определитель 11 образа кардиограммы состоит из: блока 149 подготовки данных, который служит для подготовки массива данных множества А (кардиограммы исследуемого пациента) к сравнению с массивами данных множеств В, С, D базы 10 образов кардиограмм; блоков 150, 152, 154, 156, 158, 160 сравнения; оперативных запоминающих устройств (ОЗУ) ОЗУ-7 151, ОЗУ-8 153, ОЗУ-9 155, ОЗУ-10 157, ОЗУ-11 159, ОЗУ-12 161; входом 162 от базы 10 образов кардиограмм; входом 163 от блока 1 временной дискретизации; входом 164 от блока 5 фиксации фазы; входом 165 от блока 7 фиксации частоты; входом 166 от фиксатора 9 кардиограммы; входами 167, 168, 169, 170, 171 от базы 10 образов кардиограмм; выходами 172, 173, 175, 176, 178, 179 в базу 10 образов кардиограмм и выходами 174, 177, 180 в блок 13 фиксации состояний и анализа их динамики.

На фиг. 12 представлена структурная схема блока 12 обратного преобразования Фурье.

Блок 12 обратного преобразования Фурье состоит из: входного регистра 181 с количеством разрядов, равным количеству выходных разрядов для одной гармоники, умноженных на количество исследуемых гармоник; обратного преобразователя 182 Фурье и выходного регистра 183. Входы 184 подключены к выходам базы 10 образов кардиограмм, выходы 185 подключены к интерфейсу 15, а выходы 186 подключены к входам монитора 16.

На фиг. 13 представлена структурная схема блока 13 фиксации состояний и анализа их динамики.

Блок 13 фиксации состояний и анализа их динамики состоит из: регистра 187 текущего состояния; базы 188 диагнозов по типу пациента; блока 189 сравнения и выбора диагноза; блока 190 хранения диагнозов пациента, блока 191 анализа. Вход/выход 192 соединен с выходом блока 8 ввода данных о пациенте и входом блока 190, вход/выход 193 соединен с выходом базы 14, вход 194 – с выходом определителя 11 образа кардиограммы. Выход 195 соединен с входом интерфейса 15, а выход 196 соединен с монитором 16.

На фиг. 14 представлена структурная схема базы 14 кардиологических диагнозов.

База 14 кардиологических диагнозов состоит из: формирователя 197 записей по типу пациента, блока 198 записей по типу пациента, базы 199 данных кардиологических диагнозов. Вход/выход 200 соединен с блоком 13 фиксации состояний и анализа их динамики, а вход/выход 201 соединен с интерфейсом 15.

Сущность изобретения, как технического решения, выражается в совокупности существенных признаков, достаточной для достижения обеспечиваемого изобретением технического результата.

Поставленная задача решается следующим образом. Вначале производится оцифровка кардиограмм, снятых с пациента, и их запись в ОЗУ. Затем производится преобразование оцифрованных кардиограмм в образы Фурье (амплитуды, фазы и частоты гармоник) и поиск подходящего образа из базы образов. В завершении по набору образов определяется диагноз заболевания пациента.

Блок 1 временной дискретизации служит для синхронизации работы блоков устройства при принятом временном разделении каналов. Частота дискретизации выбирается в делителе частоты 18; фазы и длительности сигналов для управления различных блоков формируются в блоках 19, 20, 21, 22, 23, 24 формирования сигналов. Вход 25 от блока 8 (выход 105) ввода данных о пациенте служит для включения процесса снятия кардиограмм пациента. Выход 26 соединен с входами 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72 блока 3 первичной обработки сигналов и служит для управления АЦП и ОЗУ данного блока в процессе оцифровки кардиограмм пациентов. Выход 27 соединен со входом 81 блока 4 коммутации каналов и служит для управления мультиплексором 80. Выход 28 соединен с входами 92, 93, 94 блока 6 дискретного преобразования Фурье и служит для управления регистром-1 88, преобразователем 89 Фурье и регистром-2 90. Выход 29 соединен с входом 108 блока 8 ввода данных о пациенте и служит для записи кардиограмм пациентов в оцифрованном виде в соответствующую базу 103 данных. Выход 30 соединен с соответствующими входами фиксатора 9 кардиограмм и служит для записи данных в регистр 111 сигналов, регистр 112 каналов и в формирователь 113 сигнала «Начало анализа». Выход 31 соединен с входом 163 определителя 11 образа кардиограмм.

ЭКГ-электроды 2 служат для передачи электрических сигналов (кардиограмм) с тела пациента в данное устройство, в блок 3 первичной обработки сигналов. Обычно для кардиологического обследования используется 12 ЭКГ-электродов, в рассматриваемом устройстве их количество не ограничено, это может быть и 12 ЭКГ-электродов, и 24 ЭКГ-электрода. Для удобства описания, в рассматриваемом устройстве используется 6 ЭКГ-электродов. ЭКГ-электроды используются стандартные, серийно изготавливаемые.

Блок 3 первичной обработки сигналов обеспечивает следующие функции для каждого измерительного канала: частотная фильтрация по входу; усиление сигнала до определенного (наперед заданного) нормированного уровня; преобразование аналогового сигнала в дискретный (оцифровка сигнала), запись оцифрованного сигнала в ОЗУ. Частотная фильтрация по каждому каналу осуществляется фильтрами 32, 36, 40, 44, 48, 52, на входы 58, 61, 64, 67, 70, 73 которых сигналы поступают от ЭКГ-электродов. Усилители-ограничители 33, 37, 41, 45, 49, 53 обеспечивают усиление сигналов по каждому каналу и далее сигналы подаются на входы АЦП-1 34, АЦП-2 38, АЦП-3 42, АЦП-4 46, АЦП-5 50, АЦП-6 54. Все АЦП управляются сигналами с блока 1 временной дискретизаций по входам 56, 59, 62, 65, 68, 71. Выходные сигналы со всех АЦП поступают на входы ОЗУ. Все ОЗУ управляются сигналами с блока 1 временной дискретизации по входам 57, 60, 63, 66, 69, 72. С выходов 74, 75, 76, 77, 78, 79 сигналы поступают в блок 4 коммутации каналов на вход 82.

Блок 4 коммутации каналов служит для выбора в определенный момент одного из шести необходимого канала исследования, сигналы которого передаются в блок 6 дискретного преобразования Фурье через выход 83 и в блок 8 ввода данных о пациенте через выход 84. Выбор канала осуществляется мультиплексором 80, который управляется через вход 81 сигналами блока 1 временной дискретизации.

Блок 5 фиксации фазы хранит данные о фазе каждой гармоники, полученной после дискретного преобразования Фурье в блоке 6. Причем за нулевую фазу принимается фаза 1-й гармоники определенного (наперед выбранного) канала. Данные о фазах хранятся в регистре 85 сигналов фазы, куда они заносятся через вход 86, соединенный с выходом 96 блока 6 дискретного преобразования Фурье. Через вход 86 поступают и сигналы управления регистром 85. Выход 87 служит для передачи данных о фазах в необходимый момент времени в определитель 11 образа кардиограммы.

Блок 6 дискретного преобразования Фурье служит для преобразования сигналов каждого канала в Фурье-образ (амплитуды, частоты и фазы каждой гармоники). Преобразование Фурье, как правило, достаточно вести до 11-й гармоники. Кардиологические сигналы каждого канала в оцифрованном виде в необходимый момент времени поступают по входу 91 в регистр-1 88 и далее в преобразователь 89 Фурье. На выходах преобразователя Фурье, после преобразования, присутствуют значения амплитуды, частоты и фазы каждой гармоники, которые заносятся в регистр-2 90. Значения амплитуд гармоник через выход 95 передаются в фиксатор 9 кардиограммы; значения частот гармоник через выход 97 передаются в блок 7 фиксации частоты, а значения фазы фаз гармоник через выход 96 передаются в блок 5 фиксации фазы.

Блок 7 фиксации частоты хранит данные о частоте каждой гармоники, полученной после дискретного преобразования Фурье в блоке 6. Данные о частотах хранятся в регистре 98 сигналов частоты, куда они заносятся через вход 99, соединенный с выходом 97 блока 6 дискретного преобразования Фурье. Через вход 99 поступают и сигналы управления регистром 98. Выход 100 служит для передачи данных о частотах в необходимый момент времени в определитель 11 образа кардиограммы.

Блок 8 ввода данных о пациенте служит для записи и хранения необходимых данных о пациенте, его кардиограмм и диагнозов; блок состоит из клавиатуры 101, постоянного запоминающего устройства 102 с идентификаторами (ПЗУ-1 с id) пациентов, базы 103 данных кардиограмм пациентов, где хранятся данные кардиограмм пациента и его диагнозы. С интерфейсом 15 блок связан по входу/выходу 104. По входу 107 поступают сигналы кардиограмм в базу 103 данных кардиограмм с блока 4 коммутации каналов, а по входу 108 поступают сигналы управления с блока 1. Команда на начала исследования пациента передается по выходу 105 в блок 1. В монитор 16 передаются по выходу 106 реквизиты (данные) пациента, а по выходу 109 – сигналы кардиограмм пациента. По входу/выходу 110 в блок 13 фиксации состояний и анализа их динамики передаются необходимые реквизиты (данные) исследуемого пациента, а из блока 13 передаются данные установленного диагноза и степень надежности его оценки.

Фиксатор 9 кардиограмм (фиг. 9) хранит информацию о кардиограмме пациента (одного канала) и код объекта (канала) в течение времени определения образа кардиограммы. Сигнал кардиограммы пациента (одного канала) в виде матрицы значений амплитуд гармоник поступает от блока 6 на вход 114 и записывается в регистр 111 сигналов. Одновременно на вход 117 поступают сигналы с блока 1 временной дискретизации с выхода 30 в виде кода (номера) объекта (канала) и записываются в регистр 112 каналов. Сигналы управления записью в регистры поступают по входам 115, 116 от блока 1. После записи в вышеназванные регистры с блока 1 поступает сигнал на вход 118 и затем в формирователь 113 сигнала «Начало анализа», после чего формируется сигнал на выходе 121 для определителя 11 о начале определения образа кардиограммы. Выходы 119 с регистра 111 сигналов, выходы 120 с регистра 112 каналов и выход 121 от формирователя 113 соединены с соответствующими входами определителя 11 образа кардиограммы.

База 10 образов кардиограмм хранит информацию по каждому каналу (в нашем примере их 6) в доверительных интервалах по различным уровням оценки (в нашем примере их 3: 0,9; 0,95; 0,99). Причем образы кардиограмм классифицируются по диагнозам и типам пациентов, а также по частоте 1-й гармоники. Образ кардиограмм включает в себя амплитуды, частоты и фазы гармоник исследуемого канала. От интерфейса 15 через вход 133 записываются данные образов блоком 122 ввода новых значений образов при режиме корректировки данных, также от интерфейса 15 через вход 134 записываются данные образов блоком 123 ввода новых значений образов при режиме загрузки данных. Через входы 135, 136 происходит управление процессом поиска, выборки и определения образа кардиограммы пациента блоком 124 запуска необходимой выборки данных с помощью определителя 11 образа кардиограммы. Входы 137, 138, 139, 140, 141, 142 от определителя 11 и выходы 143, 144, 145, 146, 147, 148 в определитель 11 участвуют в процессе выборки данных.

Определитель 11 образа кардиограммы определяет образ кардиограммы пациента (одного канала) путем сравнения сигнала кардиограммы пациента (фиксатор 7 кардиограммы) с данными, хранившимися в базе 1 образов кардиограмм. Сигнал об образе кардиограммы объекта содержит в цифровом коде амплитуды гармоник сигнала после дискретного преобразования Фурье в виде матрицы (массив А). Вначале массив А сигнала о образе кардиограммы объекта сверяется с массивом B1 на предмет выделения из базы данных 126 (массив B1) кардиограмм, все амплитуды гармоник которых меньше значений амплитуд гармоник массива А. Все эти состояния записываются в ОЗУ-7 151. Далее в соответствии с записями в ОЗУ-7 151 из базы данных 127 (массив B2) выбираются данные верхних значений амплитуд гармоник, которые поступают на вход 167 схемы сравнения 152, где отбираются состояния, амплитуды гармоник которых (Массив В2) больше амплитуд гармоник массива А. Данные выбранных образов (Массив B2) сохраняются в ОЗУ-8 153. Это будет образ кардиограммы, который с достоверностью 0,99 можно считать истинным образом кардиограммы пациента. Код данного образа соответственно передается: через выход 173 в базу 10 образов кардиограмм и через выход 174 в блок 13 фиксации состояний и анализа их динамики. Если же образ кардиограммы с достоверностью 0,99 не будет определен, то массив А сверяется с массивами C1, C2 аналогично ранее сказанному для массивов B1, B2. Если код будет определен, то это будет образ кардиограммы, который с достоверностью 0,95 можно считать истинным образом кардиограммы пациента. Код данного образа соответственно передается: через выход 176 в базу 10 образов кардиограмм и через выход 177 в блок 13 фиксации состояний и анализа их динамики. Если же образ с достоверностью 0,95 не будет определен, то массив А сверяется с массивами D1, D2 аналогично ранее сказанному для массивов В1. B2. Если код будет определен, то это будет образ, который с достоверностью 0,9 можно считать истинным образом кардиограммы пациента. Код данного образа соответственно передается: через выход 179 в базу 10 образов кардиограмм и через выход 180 в блок 13 фиксации состояний и анализа их динамики. Блок 149 подготовки данных «А» служит для подготовки массива А к операциям сравнения, а также и управляет операциями сравнения. В блоке 149 еще и содержатся данные фазы и частоты каждой гармоники массива А, которые при определении истинной кардиограммы пациента предаются в блок 13 фиксации состояний и анализа их динамики.

Блок 12 обратного преобразования Фурье служит для преобразования массивов выявленного образа кардиограммы пациента (в доверительном интервале) в цифровой код исходной кардиограммы. Таким образом на мониторе можно будет видеть по каждому каналу кривую кардиограммы, снятую с пациента, кривую кардиограммы верхних значений доверительного интервала с выявленной степенью надежности и кривую кардиограммы нижних значений доверительного интервала с выявленной степенью надежности. Преобразование производится в обратном преобразователе 182 Фурье, а входной регистр 181 и выходной регистр 183 служат для хранения сигналов необходимого количества времени.

Блок 13 фиксации состояний и анализа их динамики служит для определения диагноза пациента по выявленным образам кардиограмм с учетом надежности оценки и типу пациента. От блока 8 ввода данных о пациенте через вход/выход 192 поступают данные о пациенте: тип пациента в базу 188 диагнозов по типу пациента, причем тип пациента врач может сужать или расширять в данной базе. История кардиологических исследований пациента исследуется в блоке 190 хранения диагнозов пациента. В базу 188 диагнозов по типу пациента по ее запросу от базы 14 кардиологических диагнозов по входу 193 поступают образы диагнозов по типу пациента, то есть каждому набору образов кардиограмм по числу каналов соответствует образ кардиологического диагноза. Выявленные образы кардиограмм всех каналов поступают через вход 194 от определителя 11 образа кардиограммы в регистр 187 текущего состояния. Образ текущего состояния кардиограмм пациента сравнивается с образами кардиологических диагнозов по типу пациента в блоке 189 сравнения и выбора диагноза. Если выявляется образ диагноза, равный образу текущих состояний кардиограмм пациента, то этот диагноз и принимается. Если образ текущих состояний кардиограмм пациента не имеет соответствующего образа диагноза, то необходимо расширить тип пациента, если и после этого не выявится диагноз, то это значит в базе 14 кардиологических диагнозов нет диагноза соответствующего текущего образа состояний кардиограмм пациента и устройство поставить диагноз не может, но функции кардиографических исследований кардиограмм остаются. При выявленном диагнозе общая достоверность его оценки вычисляется по формуле:

, i=1, …, n;

где: H - достоверность оценки диагноза; hi - достоверность оценки кардиограммы i-го канала; n - количество каналов исследования (количество ЭКГ-электродов).

Блок 191 анализа служит для подготовки необходимых данных для передачи по выходу 195 в интерфейс 15 и для передачи по выходу 196 в монитор. Если пациент обследовался неоднократно, то в блоке 191 анализа анализируется и представляется динамика состояния пациента.

База кардиологических диагнозов содержит необходимое количество диагнозов соответствующим набору (количеству ЭКГ-электродов) кардиограмм. Каждой кардиограмме определитель 11 образа кардиограммы присваивает число, взятое из базы 10 образов кардиограмм. По набору этих чисел и определяется диагноз. В принципе результатов диагноза может быть несколько и какой выбрать, решает исследователь.

Рассмотрим работу устройства с учетом работы шести ЭКГ-электродов, АЦП 14-разрядные, преобразователь Фурье разлагает сигнал на 6 гармоник (1-ю, 3-ю, 5-ю, 7-ю, 9-ю, 11-ю). Рассчитаем минимально допустимый период времени снятия кардиограммы. Минимальную частоту пульса примем равную 30 Гц, отсюда период равен примерно 0,03 сек. Это и будет минимально допустимый период времени измерения одного объекта, но с учетом хорошего качества снятия кардиограмм желательно исследовать не менее 10 периодов, т.е. время снятия кардиограмм 3 сек.

Максимальную частоту измеряемого сигнала примем равную 2кГц, отсюда период равен 0,0005 сек. Примем, что за данный период необходимо произвести 10 измерений для нормальной работы преобразователя Фурье, следовательно, период дискретизации измерений одного канала будет равен 0,00005 сек или частота измерений равна 20 кГц, а для 6-и каналов – 120 кГц. Примем, что для хранения значений одного измерения необходимо 2 байта, тогда для хранения значений всех измерений в течение 3 сек необходимо 2*120000*3=720 кбт, это и есть минимальная емкость ОЗУ блока 3 первичной обработки сигналов.

Примем допустимое время работы преобразователя Фурье, для одного канала, равным 0,5 сек, что достаточно для выделения шести гармоник. Время нахождения образа кардиограммы для каждого канала от 1 до 3 секунд. Время определения диагноза 1-2 сек. Отсюда общее время обследования пациента от 10 до 30 секунд.

Поясним работу блока 1 на периоде снятия кардиограммы. После запуска блока 1 по входу 25 на первом тактирующем импульсе происходит оцифровка значений биоэлектрических сигналов первого канала (от первого ЭКГ-электрода) в АЦП-1 34 и запись этих значений в ОЗУ-1 35. Далее на втором тактирующем импульсе происходит оцифровка значений биоэлектрических сигналов второго канала (от второго ЭКГ-электрода) в АЦП-2 38 и запись этих значений в ОЗУ-2 39. Аналогично все происходит до шестого тактирующего импульса для шестого канала. На седьмом тактирующем импульсе происходит оцифровка значений биоэлектрических сигналов опять первого канала (от первого ЭКГ-электрода) в АЦП-1 34 и запись этих значений в ОЗУ-1 35. И так циклически происходит первичная обработка сигналов в блоке 3 в течение 3 секунд.

1. Устройство для кардиографического контроля состояния пациентов, содержащее монитор, интерфейс, по меньшей мере, один датчик электрокардиограмм (ЭКГ-электрод), установленный на пациенте, предназначенный для снятия с тела пациента электрокардиографических сигналов, соединенный выходом с входом блока первичной обработки сигналов, другой вход этого блока соединен с выходом блока временной дискретизации, а выход блока первичной обработки сигналов соединен с блоком коммутации каналов, отличающееся тем, что выходы блока коммутации каналов соединены с блоком дискретного преобразования Фурье, на выходе которого присутствуют значения амплитуды, частоты и фазы гармоник исследуемого сигнала, и с блоком ввода данных о пациенте, гармоники обрабатываются в фиксаторе кардиограмм, который запоминает и выдает на выходе амплитуды гармоник исследуемого сигнала необходимое количество времени, амплитуды гармоник поступают в определитель образа кардиограммы, который сравнивает полученный образ от ЭКГ-электрода с учетом доверительных интервалов и определенной степенью надежности с образами из базы образов кардиограмм, выход определителя соединен с входом блока фиксации состояний и анализа их динамики, где по данным образов кардиограмм от всех ЭКГ-электродов формируется диагноз болезни пациента, путем сравнения набора образов кардиограмм от ЭКГ-электродов с набором, характеризующим диагноз болезни из базы кардиологических диагнозов с учетом доверительных интервалов и определенной степенью надежности, в этом же блоке определяется степень надежности диагноза, динамика диагноза в зависимости от предыдущего исследования пациента, время определения диагноза, все эти данные выводятся на монитор, передаются в интерфейс для хранения и исследования на других технических средствах и в блок ввода данных о пациенте, где они хранятся в соответствующих архивах пациента.

2. Устройство по п. 1, отличающееся тем, что выход базы образов кардиограмм соединен также с блоком обратного преобразования Фурье, выход которого соединен с интерфейсом и монитором, на котором могут демонстрироваться не только кардиограммы пациента, но и кардиограммы доверительных интервалов, на основе которых поставлен диагноз.

3. Устройство по п. 1, отличающееся тем, что соответствующие выходы блока дискретного преобразования Фурье соединены с блоком фиксации фазы и с блоком фиксации частоты, выходы которых соединены с определителем образа кардиограммы, что необходимо для более точного определения диагноза пациента.



 

Похожие патенты:

Изобретение относится к медицине, в частности к кардиологии. На основе известных детальных моделей формируется стохастическая модель тока реполяризации эпикарда и определяются ее параметры по выборкам значений потенциала эпикарда, найденного при решении обратной задачи электрокардиографии в опорных точках компьютерной модели сердца пациента.

Изобретение относится к области медицины, а именно к кардиологии и к функциональной диагностике. Осуществляют анализ вариабельности сердечного ритма (ВСР) на длительных промежутках времени у здоровых лиц и больных с различными формами кардиопатологии.
Изобретение относится к медицине, к области кардиологии. Сначала на фоне болевого синдрома, характерного для ишемии миокарда и в верхнем отделе спины, производят запись ЭКГ.
Изобретение относится к медицине, а именно к кардиологии. Выполняют анализ показателей Холтеровского мониторирования ЭКГ.

Изобретение относится к медицине, а именно к диагностике и мониторингу ЭКГ и частоты пульса пациента. Осуществляют мониторинг сердечной деятельности пациента.

Изобретение относится к медицине, а именно к сердечно-сосудистой диагностике. Определяют параметры модели распространения возбуждения в миокарде.

Изобретение относится к медицине, а именно к терапии. Анализируют 4 высокоинформативных показателя вариабельности сердечного ритма и при значениях частоты сердечных сокращений в фоновой пробе HR<69 уд./мин; частоты сердечных сокращений в ортостатической пробе HR<88 уд./мин; баланса симпатических и парасимпатических влияний LF/HF<0.58 - ВРС, фоновая проба, баланса симпатических и парасимпатических влияний LF/HF<3.40 - ВРС, ортостатическая проба, диагностируют синдром вегетативной дистонии по гипотоническому типу.

Изобретение относится к медицине, а именно к кардиологии. Проводят фоновое исследование вариабельности ритма сердца в положении лежа 5 мин и при выполнении активной ортостатической пробы в течение 5 мин с последующим спектральным анализом и расчетом относительных спектральных показателей.

Изобретение относится к медицине, кардиологии. Электроды для регистрации ЭКГ устанавливают на кожу левой пекторальной области пациента в следующих точках: точка 1 - электрод, который при стандартной записи ЭКГ прикрепляется к правой руке, устанавливают в II межреберье по левой парастернальной линии, точка 2 - электрод, который при стандартной записи ЭКГ прикрепляется к левой руке, устанавливают на середине левой дельтовидно-пекторальной борозды.

Изобретение относится к медицине, а именно к терапии сердечно-сосудистых заболеваний. Осуществляют усиленную наружную контрпульсацию.

Изобретение относится к медицине и нефрологии и может быть использовано для определения наполненности мочевого пузыря. Накладывают электроды на кожу в области нахождения мочевого пузыря. Подключают их к усилителю биопотенциалов для получения двух отведений, с помощью которых измеряют сигналы биоэлектрической активности стенок мочевого пузыря. Одновременно производят регистрацию электрокардиограммы для фильтрации сигнала. Математически обрабатывают полученные сигналы путем нормировки и построения спектров сигналов мочевого пузыря и электрокардиограммы методом Фурье. Осуществляют фильтрацию сигнала мочевого пузыря от сигнала электрокардиограммы путем деления спектра сигнала мочевого пузыря на спектр сигнала электрокардиограммы. Выделяют характерные частоты спектров из диапазона наибольшей активности 0,7 Гц, 1,5 Гц, 1,7 Гц. Указанные измерения осуществляют дважды - до и после водно-питьевой нагрузки. Сравнивают амплитуды характерных частот и по их увеличению судят о степени наполненности мочевого пузыря. Способ позволяет точно, просто и неинвазивно определить наполненность мочевого пузыря за счет одновременной регистрации биоэлектрической активности стенок мочевого пузыря и электрокардиограммы с последующей фильтрацией сигнала мочевого пузыря от сигнала электрокардиограммы. 3 ил.
Изобретение относится к области медицины, а именно к акушерству. Беременным, начиная с 26 недель, в положении сидя в течение 10-30 минут проводят дистанционное кардиофетомониторирование с помощью фетального допплера. Определяют частоту сердечных сокращений плода, апостериорную энтропию частоты сердечных сокращений плода и кратковременную вариабельность сердечного ритма (STV) по Рэдману. На основании полученных данных рассчитывают коэффициент состояния плода P по формуле. При значениях коэффициента состояния плода Р менее 500 диагностируют критическое состояние плода. Способ позволяет повысить точность и достоверность диагностики. 3 пр.

Группа изобретений относится к медицине, а именно к диагностике. Система для обеспечения карты электрической активности сердца живого существа включает: блок обеспечения проекционных изображений, блок определения положений поверхностных электродов, блок определения положения структуры сердца, блок определения карты электрической активности для определения карты электрической активности у структуры сердца. Способ осуществляет посредством работы системы. Группа изобретений позволяет снизить травматичность исследования за счет неинвазивности, а также повысить качество построения карт электрической активности сердца. 3 н. и 7 з.п. ф-лы., 3 ил.

Изобретение относится к медицинской технике, а именно к биомедицинским измерениям для диагностических целей в кардиореспираторных исследованиях сердца и дыхательных систем. Система содержит пульты дежурной службы медпомощи, в состав каждого из которых входят микроконтроллер и связанные с ним база данных, модем мегагерцевого диапазона и блоки отображения, оповещения и управления, центр контроля состояния пациентов, включающий в себя сервер и связанные с ним банк данных, автоматизированное рабочее место администратора центра и модем мегагерцевого диапазона, а также носимые телеметрические приборы, каждый из которых содержит многоканальный микроконтроллер, с которым связаны микропроцессор с клавиатурой, блок измерения ЭКГ, блок анализа дыхания, блок контроля гемодинамики и модем мегагерцевого диапазона, а также измеритель подвижности пациента, выход которого подключен к соответствующему входу многоканального микроконтроллера, к выходам которого подключены блок звукового оповещения и дисплей. В каждом носимом телеметрическом приборе установлены модуль GPS/ГЛOHACC, блок управления и контроля питания от аккумуляторной батареи и модем гигагерцевого диапазона, например WiFi модем. При этом все вышеупомянутые модемы мегагерцевого диапазона выполнены в виде маломощных "устройств малой дальности действия" с использованием нелицензируемых полос частот, например, 433 или 868 МГц. Использование изобретения позволяет повысить эффективность системы за счет устранения перегрузки трафика. 4 ил.

Изобретение относится к области медицины, в частности к кардиологии. Осуществляют автоматический съем сигнала электрокардиограммы пациента. Проводят его оцифровку и регистрацию, выделение кардиоциклов, определение амплитуд и длительностей основных зубцов, сегментов и интервалов сигнала. Вычисляют коэффициенты непрерывного вейвлет-преобразования. При этом для каждого кардиоцикла определяют его локальные точки экстремума нулевых изолиний поверхности, образованной коэффициентами вейвлет-преобразования рассматриваемого кардиоцикла, и присваивают им индексы характеристического шифра путем указания соответствующих им букв над горизонтальной чертой, если это точка максимум, и под чертой - в случае минимума, и указывают их взаимосвязи между собой посредством добавления индекса, указывающего на точку экстремума, в случае наличия взаимосвязи посредством нулевой изолинии между точками экстремума и отсутствия индекса в противном случае. Выбор основных изолиний и определение топологических свойств их структуры осуществляют с использованием результатов амплитудно-временного анализа кардиоцикла, переход из одной электрокардиографической стадии в динамике миокарда в другую устанавливают по смене характеристического шифра кардиоцикла со временем при регистрации изменений в анализируемой электрокардиограмме. Способ позволяет в автоматическом режиме отслеживать стадии в динамике изменений функционального состояния миокарда. 12 з.п. ф-лы, 11 ил.

Изобретение относится к медицине, в частности к кардиологии. Выполняют регистрацию ЭКГ и определяют частоту сердечных сокращений (ЧСС) и амплитудно-временные параметры кардиологических циклов. На основании величин фактических интервалов R-R, Q-T и P-Q для фактической ЧСС посредством аппаратных и программных средств последовательно вычисляют величины должных интервалов Q-Tc и P-Qc, сопоставляют величины фактического P-Q и должного P-Qc интервалов между собой и по отклонению между их величинами производят оценку функционального состояния AV соединения, при этом величину должного интервала P-Qc вычисляют по оригинальной формуле. Способ позволяет с достаточной клинической информативностью определять функциональное состояние AV соединения, выявить начальные этапы патологии AV соединения. 2 з.п. ф-лы, 7 ил., 4 пр.
Изобретение относится к области медицины, а именно к кардиологии. Проводят ЭКГ с физической нагрузкой и при выявлении во время пробы депрессии сегмента ST 1 мм и более и/или стенокардии проводят трехнедельный курс ударно-волновой терапии. При этом ударно –волновую терапию проводят в режиме 100 импульсов плотностью энергии 0,09 мДж/мм2 на зону в 1 см2 каждого сегмента левого желудочка. Воздействие осуществляют по 3 сеанса в неделю, причем на первой неделе на каждом из трех сеансов осуществляют воздействие из апикальной четырехкамерной позиции на базальный нижнеперегородочный сегмент, базальный переднебоковой сегмент; из апикальной двухкамерной позиции на базальный нижний сегмент, базальный передний сегмент; из апикальной трехкамерной позиции на базальный нижнебоковой сегмент, базальный переднеперегородочный сегмент; на второй неделе из апикальной четырехкамерной позиции на средний нижнеперегородочный сегмент, средний переднебоковой сегмент; из апикальной двухкамерной позиции на средний нижний сегмент, средний передний сегмент; из апикальной трехкамерной позиции на средний нижнебоковой сегмент, средний переднеперегородочный сегмент; на третьей неделе из апикальной четырехкамерной позиции на апикальный перегородочный сегмент, апикальный боковой сегмент; из апикальной двухкамерной позиции на апикальный нижний сегмент, апикальный передний сегмент; из апикальной трехкамерной позиции на апикальный боковой сегмент, апикальный перегородочный сегмент. Способ позволяет уменьшить частоту возникновения приступов стенокардии, увеличить толерантность к физической нагрузке, 2 пр.

Изобретение относится к медицине, а именно к кардиологии, и касается выбора наиболее эффективного антиаритмического препарата для больных с экстрасистолией. Это достигается тем, что больному с экстрасистолией однократно поочередно вводят тестируемые антиаритмические препараты. Каждый последующий препарат вводят через 3-5 периодов полувыведения предыдущего. До и после начала действия исследуемого антиаритмического препарата, определяемого как полупериод его полувыведения, проводят ЭКГ исследование. При этом определяют линейное отклонение корригированного предэктопического интервала отдельно для лево- и правожелудочковой экстрасистолии, наджелудочковой экстрасистолии не менее чем в 20 экстрасистолах. Затем рассчитывают индекс экстрасистолии по формуле и при наибольшем увеличении индекса экстрасистолии, по сравнению с исходными величинами, определяют исследуемый антиаритмический препарат как наиболее эффективный. Способ обеспечивает значительное сокращение времени выбора препарата в каждом конкретном случае лечения экстрасистолии. 4 пр., 12 табл.

Изобретение относится к медицине, а именно к неврологии. У пациентов молодого возраста исследуют церебральную гемодинамику, микроциркуляцию и вегетативную реактивность по показателям: скорость по прямому синусу (ПС), индекс флаксмоций (ИФМ), процентный вклад низкочастотных колебаний тканевого кровотока (%LF), процентный вклад высокочастотных колебаний тканевого кровотока (%HF), отношение симпатических и парасимпатических влияний в нормализованных единицах при фоновой записи (LF/HF), а также оценивают длительность цефалгического синдрома и наличие или отсутствие отечности век и лица по утрам. Затем находят значение прогностического коэффициента (ПК). Затем рассчитывают сумму прогностических коэффициентов, делят ее на 38,1 и при полученных значениях от 1,6 до 2,34 прогнозируют возникновение артериальной гипертензии. Способ позволяет прогнозировать возникновение компенсаторной артериальной гипертензии у лиц молодого возраста с идиопатической артериальной гипотензией. 1 табл.

Изобретение относится к области медицины, а именно к кардиологии. Для прогнозирования эффективности длительных физических тренировок у больных гипертонической болезнью проводят тест с дозированной физической нагрузкой на велоэргометре. Определяют частоту сердечных сокращений (ЧСС) покоя, пороговую ЧСС и скорость восстановления ЧСС, как разницу между пороговой ЧСС и ЧСС конца конкретной минуты восстановительного периода. При этом скорость восстановления ЧСС определяют в конце 1-й, 2-й и 5-й минут восстановительного периода. Определяют прогностические коэффициенты F1 и F2 по формулам F1= -62,4+1,16*x1+0,5*x2-0,09*x3+0,5*x4 и F2= -68,7+0,99*x1+0,78*x2-0,26*x3+0,7*x4, где x1 - ЧСС покоя; х2 - скорость восстановления ЧСС в конце 5-й минуты восстановительного периода; х3 - скорость восстановления ЧСС в конце 1-й минуты восстановительного периода; х4 - скорость восстановления ЧСС в конце 2-й минуты восстановительного периода. При F2 больше F1 прогнозируют эффективность длительных физических тренировок. Способ повышает эффективность физической реабилитации больных гипертонической болезнью, за счет объективного выбора индивидуальных программ физической реабилитации. 2 пр., 2 табл.

Изобретение относится к медицинской технике. Устройство для кардиографического контроля состояния пациентов содержит монитор, интерфейс, ЭКГ-электроды для снятия с тела пациента электрокардиографических сигналов, соединенные выходом с входом блока первичной обработки сигналов, другой вход этого блока соединен с выходом блока временной дискретизации, а выход блока первичной обработки сигналов соединен с блоком коммутации каналов. Выходы блока коммутации каналов соединены с блоком дискретного преобразования Фурье, на выходе которого присутствуют значения амплитуды, частоты и фазы гармоник исследуемого сигнала, и с блоком ввода данных о пациенте. Гармоники обрабатываются в фиксаторе кардиограмм, который запоминает и выдает на выходе амплитуды гармоник исследуемого сигнала необходимое количество времени. Амплитуды гармоник поступают в определитель образа кардиограммы, который сравнивает полученный образ от ЭКГ-электрода с учетом доверительных интервалов и определенной степенью надежности с образами из базы образов кардиограмм. Выход определителя соединен с входом блока фиксации состояний и анализа их динамики, где по данным образов кардиограмм от всех ЭКГ-электродов формируется диагноз болезни пациента путем сравнения набора образов кардиограмм от ЭКГ-электродов с набором, характеризующим диагноз болезни из базы кардиологических диагнозов с учетом доверительных интервалов и определенной степенью надежности. В этом же блоке определяется степень надежности диагноза, динамика диагноза в зависимости от предыдущего исследования пациента, время определения диагноза. Данные выводятся на монитор, передаются в интерфейс для хранения и исследования на других технических средствах и в блок ввода данных о пациенте, где они хранятся в соответствующих архивах пациента. Достигается повышение точности оценки кардиологического состояния пациента и более качественное определение параметров конкретной болезни, а также увеличится скорость диагностирования. 2 з.п. ф-лы, 14 ил.

Наверх