Ракетно-прямоточный двигатель с регулируемым расходом твёрдого топлива

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых (М≥5) крылатых ракетах с ракетно-прямоточными двигателями, предназначенных для полетов на больших высотах. Ракетно-прямоточный двигатель содержит воздухозаборник, газогенератор с зарядом твердого топлива, соединенный с ним регулятор расхода, камеру сгорания с профилированным выходным соплом. Регулятор расхода выполнен с возможностью двухступенчатого регулирования расхода продуктов сгорания твердого топлива и содержит корпус. Корпус включает переднюю крышку в виде перфорированной решетки, заднюю крышку и установленную между ними кольцевую сопловую решетку с отверстиями. Внутри корпуса установлены неподвижный вкладыш с центральным отверстием и перемещающиеся относительно него регулирующий элемент и профилированная втулка. Между неподвижным вкладышем, регулирующим элементом и профилированной втулкой сформирован криволинейный кольцевой канал с изменяемым проходным сечением, ограниченный кольцевой сопловой решеткой с отверстиями, оси которых наклонены под углом 45÷135° к центральной продольной оси двигателя. Камера сгорания выполнена в виде канала переменного сечения, обеспечивающего разгон продуктов сгорания от дозвуковых до сверхзвуковых скоростей, а профилированное выходное сопло выполнено таким образом, что обеспечивает разгон продуктов сгорания до скоростей с числом Маха M≥4. Изобретения направлено на повышение удельного импульса, увеличение дальности полета и увеличении полноты сгорания твердого топлива в воздушном потоке. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых (M≥5) крылатых ракетах с ракетно-прямоточными двигателями (РПД) для полетов на больших высотах.

В настоящее время интенсивно ведутся исследования и разработка РПД с газогенераторами (ГГ) на борсодержащих твердых топливах с регуляторами расхода. Такие системы разрабатываются для крылатых летательных аппаратов различного назначения (от снарядов для установок залпового огня до крылатых ракет большой дальности). Ранее РПД на твердом топливе имели нерегулируемые газогенераторы. Самым первым представителем таких двигателей является двигатель ракеты "земля-воздух" 3М9.

Совершенствование существующих РПД на твердом топливе достигается применением газогенераторов с узлом регулирования расхода продуктов сгорания твердого топлива, что позволяет оптимизировать расход твердого топлива в соответствии с траекторией полета летательного аппарата. Для получения высокой полноты сгорания твердого топлива необходима организация эффективного рабочего процесса в камере сгорания. Известна конструкция РПД, состоящего из отсека с размещенными в нем газогенератором с зарядом твердого топлива и двухступенчатым регулятором расхода продуктов сгорания с распределенным вводом струй в поток воздуха, поступающего через воздухозаборник, и камеры сгорания с соплом (Ракетно-прямоточные двигатели на твердых и пастообразных топливах. М.: Физматлит, 2010 г., прототип).

К недостаткам конструкции прототипа можно отнести большую длину зоны перемешивания струй, выдуваемых из ГГ, вдоль оси камеры сгорания в воздушный поток, что приводит к увеличению размеров камеры сгорания, снижению удельного импульса и уменьшению дальности полета.

Задачей предлагаемого изобретения является повышение удельного импульса на 5-10% и увеличение дальности полета за счет регулируемого расхода продуктов сгорания твердого топлива с недостатком окислителя, подаваемого в воздушный поток.

Технический результат состоит в увеличении полноты сгорания твердого топлива в воздушном потоке.

Для решения этой задачи и достижения технического результата предлагается ракетно-прямоточный двигатель, содержащий воздухозаборник, газогенератор с зарядом твердого топлива, соединенный с ним регулятор расхода, выполненный с возможностью двухступенчатого регулирования расхода продуктов сгорания твердого топлива, камеру сгорания с профилированным выходным соплом. Регулятор расхода содержит корпус, включающий переднюю крышку в виде перфорированной решетки, заднюю крышку и установленную между ними кольцевую сопловую решетку с отверстиями. Внутри корпуса установлены неподвижный вкладыш с центральным отверстием и перемещающиеся относительно него регулирующий элемент и профилированная втулка. При этом между неподвижным вкладышем, регулирующим элементом и профилированной втулкой сформирован криволинейный кольцевой канал с изменяемым проходным сечением, ограниченный кольцевой сопловой решеткой с отверстиями, оси которых наклонены под углом 45÷135° к центральной продольной оси двигателя. Камера сгорания выполнена в виде канала переменного сечения, обеспечивающего разгон продуктов сгорания от дозвуковых до сверхзвуковых скоростей, а профилированное выходное сопло обеспечивает разгон продуктов сгорания до скоростей с числом Маха М≥4.

Заряд твердого топлива может быть кинематически связан с приводом, создающим продольное движение заряда в сторону регулятора расхода со скоростью, равной скорости горения твердого топлива, обеспечивая постоянство свободного объема в газогенераторе.

Воздухозаборник выполнен таким образом, что вход в него смещен к регулятору расхода, а воздушный поток наклонен к продольной оси двигателя под углом 10÷20°.

На внутреннюю стенку камеры сгорания может быть нанесено теплозащитное покрытие в виде твердого топлива или полимерного материала, скорость горения которого в 2÷4 раза меньше скорости горения твердого топлива в газогенераторе. Наличие такого покрытия создает активную газовую завесу, защищающую стенки камеры газогенератора, и повышает эффективность ракетно-прямоточного двигателя.

Предлагаемое изобретение поясняется чертежами.

На фиг. 1 представлен общий вид предлагаемой конструкции РПД с регулятором расхода.

На фиг. 2 изображен общий вид РПД, в котором заряд твердого топлива в газогенераторе перемещается со скоростью, равной скорости горения твердого топлива с сохранением постоянной величины свободного объема.

На фиг. 3 представлен вариант РПД, когда воздухозаборник выполнен таким образом, что его вход смещен к регулятору расхода.

На фиг. 4 представлен общий вид РПД с теплозащитным покрытием, размещенным на внутренней стенке камеры сгорания.

Газогенератор 1 (фиг. 1, 2, 3, 4) соединен с регулятором расхода 2. Регулятор расхода 2 содержит корпус, состоящий из передней крышки 3 в виде перфорированной решетки, задней крышки 4, в полости которой размещен привод 5, и установленной между ними кольцевой сопловой решетки 6 с отверстиями, оси которых наклонены на 45÷135° к центральной продольной оси двигателя. Внутри корпуса регулятора расхода установлены неподвижный вкладыш 7 с центральным отверстием, регулирующий элемент 8 и профилированная втулка 9. Регулирующий элемент 8 и профилированная втулка 9 установлены на центральном валу 16 и приводятся в движение приводом 5, связанным с центральным валом. Причем между неподвижным вкладышем 7, регулирующим элементом 8 и профилированной втулкой 9 формируется криволинейный кольцевой канал с переменным проходным сечением, который переходит в отверстия сопловой решетки 6. Камера сгорания 10 имеет переменное проходное сечение для разгона продуктов сгорания от дозвуковых до сверхзвуковых скоростей, а выходное сопло 11 выполнено таким образом, чтобы обеспечить разгон продуктов сгорания до скоростей с числом Маха М≥4. Регулятор расхода 2 соединен с газогенератором 1 таким образом, что его передняя крышка находится внутри газогенератора 1, и установлен на входе в камеру сгорания 10. Заряд 12 твердого топлива в газогенераторе перемещается с помощью привода 13 (фиг. 2). Воздухозаборник 14 может быть выполнен осесимметричным и с уменьшенным по длине воздушным каналом, при этом вход воздухозаборника 14 максимально смещен в сторону регулятора расхода 2, а воздушный канал спрофилирован таким образом, что воздушный поток на входе в камеру сгорания 10 наклонен к продольной оси двигателя под углом 10÷20°, что необходимо для обеспечения уменьшения гидравлических потерь в воздушном канале и, как следствие, улучшения перемешивания воздушного потока с продуктами сгорания твердого топлива. На внутреннюю стенку камеры сгорания 10 нанесено или закреплено, например приклеено, теплозащитное покрытие 15 (фиг. 4).

Увеличение полноты сгорания достигается интенсификацией процесса перемешивания продуктов газогенерации твердого топлива в головной части камеры сгорания 10 путем организации вдува системы струй с переменным расходом навстречу воздушному потоку или поперек него, при этом из-за увеличения степени турбулизации потока на коротком осевом расстоянии и происходит интенсивное перемешивание топливовоздушной смеси.

Регулятор расхода 2 позволяет осуществлять двухступенчатое регулирование расхода продуктов сгорания твердого топлива и распределять их в виде замкнутой веерной струи или системы дискретных струй, истекающих в воздушный поток и способствующих интенсификации перемешивания продуктов сгорания твердого топлива с воздухом, поступающим из воздухозаборника.

Заряд 12, размещенный в газогенераторе 1, выполнен из современных твердых топлив на основе высокоэффективных окислителей, в том числе с добавками металлов и их соединений, например соединениями бора. Регулятор 2 позволяет изменять расход предварительно газифицированного в ГГ твердого топлива в соответствии с потребным законом изменения расхода твердого топлива и коэффициентом соотношения компонентов (воздух/расход твердого топлива) по траектории. Передняя крышка 3 регулятора расхода в виде перфорированной решетки с отверстиями используется для осаждения крупной фракции конденсированных продуктов сгорания вышеуказанного твердого топлива. Центральные оси отверстий решетки расположены под углом 20÷30° к центральной продольной оси регулятора расхода 2, такое исполнение обеспечивает уменьшение конденсированной фазы в продуктах сгорания, поступающих в регулятор расхода 2, что обеспечивает его наиболее эффективную работу.

Внутри регулятора расхода 2 сформирован кольцевой канал с постепенно изменяющейся площадью поперечного сечения, в котором происходит разгон потока до скорости ~0,9 М. Критическое сечение канала формируется между неподвижным вкладышем и регулирующим элементом, который через центральный вал 16 приводится в движение приводом. За критическим сечением формируется канал с переменной площадью поперечного сечения, который сообщается с отверстиями в кольцевой сопловой решетке регулятора расхода. Оси указанных отверстий наклонены к центральной продольной оси двигателя под углом 45÷135°. Отверстия в кольцевой сопловой решетке выполнены таким образом, чтобы обеспечить либо замкнутую (кольцевую) веерную струю, либо систему дискретных струй, разгоняющихся в воздушном потоке до звуковой или сверхзвуковой скорости. Это увеличивает интенсивность процесса перемешивания продуктов сгорания твердого топлива с воздухом и улучшает горение смеси.

Камера сгорания и выходное сопло могут быть выполнены, например, в виде расширяющихся конусов: камера сгорания в виде конуса с малым углом раскрытия 5÷7°, обеспечивающим разгон смеси воздух + продукты сгорания твердого топлива до малых сверхзвуковых скоростей (М=1,2…2,0), сопло - в виде расширяющегося конуса с углом раскрытия до 30°, обеспечивающим безотрывный разгон потока до значений М≥4. Профилирование камеры сгорания и выходного сопла может выполняться по кривым, обеспечивающим плавное изменение площади поперечного сечения.

Кроме того, для поддержания стабильной температуры продуктов сгорания свободный объем в газогенераторе обеспечивается постоянным путем перемещения заряда твердого топлива в газогенераторе.

РПД работает следующим образом. Стартово-разгонный двигатель разгоняет крылатый летательный аппарат (ракету) до расчетной высоты и скорости полета. За 0,3…0,5 секунд до завершения разгона подается сигнал на воспламенительное устройство газогенератора 1. С замедлением 0,1…0,2 секунд до окончания разгона открываются заглушки (не показаны) воздухозаборника 14, через который воздух поступает в камеру сгорания 10. Стартово-разгонная ступень выбрасывается из ракеты и происходит запуск РПД. В процессе работы РПД осуществляется регулирование расхода посредством регулятора расхода 2, а продукты неполного сгорания твердого топлива, истекающие через отверстия кольцевой сопловой решетки 6, поступают в воздушный поток, идущий из воздухозаборника 14 в камеру сгорания 10, где происходит их догорание. Двухступенчатое регулирование расхода осуществляется следующим образом: первая ступень - за счет изменения площади критического сечения, реализованного между неподвижным вкладышем 7 и регулирующим элементом 8; вторая ступень - после перемещения регулирующего элемента 8 в крайнее правое положение, при этом критическое сечение реализуется в кольцевом канале, образованном между неподвижным вкладышем 7, регулирующим элементом и профилированной втулкой 9, а регулирование расхода при этом осуществляется путем изменения давления продуктов сгорания в газогенераторе 1. В зависимости от параметров и динамики взаимодействия потока воздуха и струй продуктов сгорания реализуются различные режимы перемешивания потоков на входе в камеру сгорания. Дополнительный подогрев воздуха в камере сгорания при этом происходит при сгорании теплозащитного покрытия 15.

Изобретение позволяет повысить эффективность рабочего процесса (удельный импульс) за счет повышения полноты сгорания твердого топлива в воздушном потоке.

1. Ракетно-прямоточный двигатель, содержащий воздухозаборник, газогенератор с зарядом твердого топлива, соединенный с ним регулятор расхода, выполненный с возможностью двухступенчатого регулирования расхода продуктов сгорания твердого топлива, камеру сгорания с профилированным выходным соплом, отличающийся тем, что регулятор расхода содержит корпус, включающий переднюю крышку в виде перфорированной решетки, заднюю крышку и установленную между ними кольцевую сопловую решетку с отверстиями, внутри корпуса установлены неподвижный вкладыш с центральным отверстием и перемещающиеся относительно него регулирующий элемент и профилированная втулка, при этом между неподвижным вкладышем, регулирующим элементом и профилированной втулкой сформирован криволинейный кольцевой канал с изменяемым проходным сечением, ограниченный кольцевой сопловой решеткой с отверстиями, оси которых наклонены под углом 45÷135° к центральной продольной оси двигателя, при этом камера сгорания выполнена в виде канала переменного сечения, обеспечивающего разгон продуктов сгорания от дозвуковых до сверхзвуковых скоростей, а профилированное выходное сопло выполнено таким образом, что обеспечивает разгон продуктов сгорания до скоростей с числом Маха M≥4.

2. Ракетно-прямоточный двигатель по п. 1, отличающийся тем, что заряд твердого топлива кинематически связан с приводом, создающим продольное движение заряда в сторону регулятора расхода со скоростью, равной скорости горения твердого топлива, обеспечивая постоянство свободного объема в газогенераторе.

3. Ракетно-прямоточный двигатель по п. 1, отличающийся тем, что воздухозаборник выполнен таким образом, что вход в него смещен к регулятору расхода, а воздушный поток наклонен к продольной оси двигателя под углом 10÷20°.

4. Ракетно-прямоточный двигатель по п. 1, отличающийся тем, что на внутреннюю стенку камеры сгорания нанесено теплозащитное покрытие в виде твердого топлива или полимерного материала, скорость горения которого в 2÷4 раза меньше скорости горения твердого топлива в газогенераторе.



 

Похожие патенты:

Двигательная установка летательного аппарата, содержащая окружной газозаборный канал, расположенный между корпусом аппарата и обечайкой газозаборника, а также магнитную систему, наводящую в канале радиальное магнитное поле.

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при сжигании нанопорошка алюминия.

Изобретение относится к авиационной технике, а именно к конструктивным элементам двигателей летательных аппаратов. Пиротолкатель заглушки воздухозаборного устройства воздушно-реактивного двигателя состоит из корпуса, газогенератора с дроссельной шайбой, сбрасываемого с заглушкой поршня, разрушаемого элемента фиксации сбрасываемого с заглушкой поршня в корпусе и толкающего поршня, закрывающего в конце хода канал расположения сбрасываемого с заглушкой поршня своим торцом.

Изобретение относится к ракетной технике и касается крылатой ракеты (КР) со стартово-разгонной ступенью (СРС) и маршевой силовой установкой (МСУ) со сверхзвуковым прямоточным воздушно-реактивным двигателем (СПВРД).

Беспилотный летательный аппарат содержит корпус с боковыми воздухозаборными устройствами с воздуховодными каналами и двигательную установку, состоящую из бака с жидким топливом и прямоточного воздушно-реактивного двигателя, включающего камеру сгорания, сообщенную с воздуховодными каналами, стабилизаторы пламени, устанавливаемые в камере сгорания с механизмами установки.

В гиперзвуковом двигателе, содержащем камеру сгорания, топливо после топливного насоса и перед подачей в камеру сгорания нагревается выше температуры самовоспламенения.

Изобретение относится к авиационной технике, к конструктивным элементам двигателей летательных аппаратов, в частности к защитным устройствам различных типов воздушно-реактивных двигателей.

Сверхзвуковой реактивный двигатель содержит прямоточный воздушно-реактивный двигатель, имеющий камеру сгорания топливовоздушной смеси, и множество ракетных двигателей, расположенных в воздушном потоке выше по потоку камеры сгорания.

Изобретение относится к машиностроению, а именно к комбинированным ракетно-прямоточным двигателям. Выгораемое сопло комбинированного ракетно-прямоточного двигателя размещено во внутренней полости сопла маршевого режима и выполнено из двух элементов, соединенных друг с другом с возможностью формирования тракта сопла разгонного режима от дозвуковой до трансзвуковой и от трансзвуковой до сверхзвуковой областей.

Изобретение относится к ракетно-космической технике. .

Комбинированный прямоточный воздушно-реактивный двигатель содержит маршевый и скрепленный с ним разгонный двигатель, воздухозаборное устройство, оснащенное заглушками, сопло и камеру сгорания. В корпусе камеры сгорания размещен элемент, центрирующий разгонный двигатель. Корпус камеры сгорания оснащен наружной коаксиальной оболочкой, скрепленной с соплом и выполненной с возможностью перемещения назад по полету, фиксации в выдвинутом положении относительно корпуса камеры сгорания. Зона фиксации снабжена уплотнением. Корпус камеры сгорания и оболочка соединены между собой разрушаемым средством крепления. Корпус разгонного двигателя снабжен выступами, выполненными с возможностью изменения их формы при силовом контакте с соплом. Центрирующий элемент выполнен из твердого ракетного топлива с каналами для прохода выступов. Изобретение позволяет создать двигатель, обладающий повышенной итоговой энергетической эффективностью за счет получения дополнительного импульса тяги путем создания условий, обеспечивающих реализацию центрирующим элементом свойств заряда твердого ракетного топлива, а также требуемого времени для достижения полноты его сгорания при одновременном сохранении стабильности функционирования прямоточного воздушно-реактивного двигателя. 4 ил.

Изобретение может быть использовано в качестве двигательной установки летательных аппаратов. Двигатель содержит воздухозаборное устройство (ВЗУ) с каналами подачи и перепуска воздуха, камеру сгорания (КС) с размещенным в передней части канальным зарядом твердого горючего маршевой ступени, стабилизатор пламени, заряд твердого топлива стартовой ступени и маршевое сопло. Каналы подачи и перепуска воздуха соединяют ВЗУ с КС в передней и задней частях заряда твердого горючего маршевой ступени. Заряд стартовой ступени выполнен в цилиндрическом корпусе и размещен центрально с кольцевым зазором в передней части КС. На наружной поверхности корпуса стартовой ступени установлен дополнительный кольцевой заряд твердого горючего. Изобретение позволяет повысить удельный импульс стартовой и маршевой ступеней двигательной установки. 3 з.п. ф-лы, 1 ил.

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе, размещенной в топливном баке, предварительно нагружают давлением вытеснения, нагревают и подают в камеру сгорания через форсунку. Максимальный диаметр частиц порошка, давление вытеснения и температуру нагрева суспензии определяют из защищаемых соотношений. Изобретение направлено на повышение энергетических характеристик и надежности работы прямоточного воздушно-реактивного двигателя. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к ракетной технике и касается системы регулирования (CP) сверхзвукового прямоточного воздушно-реактивного двигателя (СПВРД). На поверхности передней части центрального тела расположены от двух до четырех приемников воздушного давления и приемник полного давления невозмущенного потока, внутри центрального тела размещены датчики давления, с одной стороны связанные воздушной магистралью с приемником полного давления невозмущенного потока, приемниками воздушного давления на центральном теле и в передней части центрального тела, с другой стороны - с блоком управления, состоящим из процессорного модуля, модуля управления и модуля силовых ключей, для выдачи сигнала на агрегат управления соплом в зависимости от числа Маха, перепада давления, угла атаки, угла скольжения. Технический результат изобретения – увеличение точности поддержания противопомпажных запасов, коэффициента восстановления полного давления и как следствие увеличение дальности и создание возможности выбора различных траекторий полета. 2 ил.
Наверх