Способ получения диоксида углерода

Изобретение относится к химической промышленности и охране окружающей среды и может быть использовано при переработке и утилизации органического сырья и отходов. Оксид металла генерируют в блоке-разделителе 2 окислением расплава металла кислородсодержащим газом, подаваемым методом барботажа. За счет разности плотностей обеспечивают подачу полученного оксида металла из блока-разделителя 2 в блок-окислитель 3 и поступление расплава металла из блока-окислителя 3 в блок-разделитель 2. Термическую обработку органического сырья проводят в блоке-окислителе 3 при 400-1200°С. В качестве расплава металла используют свинец или свинцово-висмутовый сплав с содержанием свинца в расплаве не менее 40%. Твердое органическое сырье подают в блок-окислитель 3 под уровень оксида металла объемом не более 20% от объема расплава металла. Жидкое органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 0,5 мл/мин на 1 л расплава металла. Газообразное органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 100 мл/мин на 1 л расплава металла. Полученный диоксид углерода с чистотой 99 об.% отводят через высокотемпературный газовый фильтр 1. Изобретение обеспечивает расширение функциональных возможностей за счёт использования различных газов, содержащих кислород. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится химическому производству и может быть использовано для переработки и утилизации органического сырья и отходов.

Известен способ получение диоксида углерода [патент РФ на изобретение №2350556 под названием «Способ производства диоксида углерода», опубл. 27.03.2009]. В данном способе сжатый, осушенный и охлажденный дымовой газ, получаемый сжиганием углеводородного топлива, детандируют. Охлаждение дымового газа осуществляют за счет рекуперативного теплообмена с обратным отбросным потоком. Из полученного газа низкого давления выделяют твердую фазу диоксида углерода. В процессе сепарации твердой фазы диоксида углерода газ низкого давления дополнительно охлаждают за счет теплообмена с испаряющимся потоком сжиженного природного газа.

Недостатком данного способа является невозможность использования твердого и жидкого сырья для получения диоксида углерода.

Наиболее близким к заявленному техническому решению является способ получения углекислого газа [патент US 5177304 под названием «Method and system for forming carbon dioxide from carbon-containing materials in a molten bath of immiscible metals», опубл. 05.01.1993].

По известному способу органическое сырье подают в заполненную расплавами двух несмешивающихся металлов реакционную емкость. Расплавы предварительно насыщают чистым кислородом, подаваемым методом барботажа извне. Термическую обработку органического сырья проводят при температуре до 1370°C. Получаемый диоксид углерода выводят из реакционной емкости по газовой трубе.

Недостатком данного технического решения является возможность проведения процесса получения диоксида углерода при подаче только чистого кислорода.

Задача изобретения состоит в исключении указанного недостатка, а именно расширении видов используемых газовых потоков, содержащих кислород.

Для исключения указанного недостатка в способе получения диоксида углерода, включающем процессы генерации оксида металла окислением расплава металла подаваемым методом барботажа кислородом и термической обработки органического сырья при температуре 400-1200°С, предлагается процессы окисления расплава металла и термической обработки органического сырья выполнять соответственно в блоке-разделителе и блоке-окислителе при частичном заполнении их расплавом металла.

В частных случаях реализации способа предлагается:

- твердое органическое сырье подавать под уровень оксида металла объемом не более 20% от объема расплава металла в блоке-разделителе;

- жидкое органическое сырье подавать под уровень оксида металла со скоростью не более 0,5 мл/мин на 1 л расплава металла в блоке-разделителе;

- газообразное органическое сырье подавать под уровень оксида металла со скоростью не более 100 мл/мин на 1 л расплава металла в блоке-разделителе;

- в качестве расплава металла использовать свинец или свинцово-висмутовый сплав, причем содержание свинца в расплаве должно составлять не менее 40%.

Технический результат предложенного способа состоит в расширении функциональных возможностей за счет использования различных газовых потоков, содержащих кислород, а не только кислорода.

Сущность изобретения поясняется на чертеже, где представлена схема одного из вариантов получения диоксида углерода по предложенному способу. На фигуре приняты следующие обозначения: 1 - высокотемпературный газовый фильтр; 2 - блок-разделитель; 3 - блок-окислитель.

Способ получения диоксида углерода включает в себя процессы генерации оксида металла MexOy окислением расплава металла Me и термической обработки органического сырья.

В качестве расплава металла Me используют свинец или свинцово-висмутовый сплав.

Причем содержание свинца в расплаве составляет не менее 40%. Окисление расплава металла Me производят воздухом в блоке-разделителе 2. Воздух подают в блок-разделитель 2 методом барботажа.

В частном случае, для достижения протекания необходимой глубины реакции воздух подают со скоростью 200-300 мл/мин на 1 л расплава металла Me в блоке-разделителе 2.

Побочные газообразные продукты реакции окисления расплава металла Me воздухом выводятся из блока-разделителя через высокотемпературный газовый фильтр 1.

Блок-разделитель 2 сообщен на двух уровнях в пределах расплава металла Me с блоком-окислителем 3.

Оксид металла MexOy за счет разности плотностей поступает из блока-разделителя 2 в блок-окислитель 3.

Блок-окислитель 3 предназначен для осуществление процесса термической обработки органического сырья в объеме оксида металла MexOy.

Органическое сырье подают в блок-окислитель 3 под уровень оксида металла MexOy для достижения протекания необходимой глубины реакции.

В частном случае, в качестве органического сырья используют твердые (уголь, автомобильные покрышки, отходы деревоперерабатывающей промышленности и др.), жидкие (отработанные масла, нефть, мазут и др.) и газообразные (био-, попутные, природный газы и др.) вещества.

В другом частном случае, твердое органическое сырье подают под уровень оксида металла MexOy объемом не более 20% от объема расплава металла Me в блоке-разделителе 3, жидкое органическое сырье подают под уровень оксида металла MexOy со скоростью не более 0,5 мл/мин на 1 л расплава металла Me в блоке-разделителе 3, газообразное органическое сырье подают под уровень оксида металла MexOy со скоростью не более 100 мл/мин на 1 л расплава металла Me в блоке-разделителе 3.

Процессы окисления расплава металла Me и термической обработки органического сырья выполняют при частичном заполнении блока-разделителя 2 и блока-окислителя 3 расплавом металла Me.

Заполнение блока-разделителя 2 и блока-окислителя 3 расплавом металла Me производится из расчета не более 70% от объема каждого из блоков, для предотвращения резких перепадов давления в газовом объеме в результате протекания реакций.

Окисление расплава металла Me и термическая обработка органического сырья осуществляют при температуре 400-1200°С.

Продукты переработки органического сырья в объеме оксида металла MexOy выводятся из блока-окислителя 3 через высокотемпературный газовый фильтр 1.

Восстановленный в результате реакции расплав металла Me за счет разности плотностей поступает из блока-окислителя 3 в сообщенный с ним блок-разделитель 2.

Технический результат изобретения - расширение функциональных возможностей способа за счет использования в нем различных типов газов, содержащих кислород, а не только за счет использования в нем чистого кислорода.

Пример конкретной реализации предложенного способа.

При одновременной подаче воздуха в блок-разделитель объемом 0,75 л (диаметр 60 мм, высота 265 мм) под уровень расплавленного свинца объемом 0,5 л со скоростью 130 мл/мин и природного газа в блок-окислитель объемом 0,75 л (диаметр 60 мм, высота 265 мм, объем теплоносителя 0,5 л) со скоростью 35 мл/мин, на выходе из блока-окислителя получают увлажненный диоксид углерода.

Температура, необходимая для протекания процессов - 800°С, давление - атмосферное. Чистота получаемого диоксида углерода ~99 об.%.

1. Способ получения диоксида углерода, включающий процессы генерации оксида металла окислением расплава металла подаваемым методом барботажа кислородом и термической обработки органического сырья при температуре 400-1200°С, отличающийся тем, что процессы окисления расплава металла и термической обработки органического сырья выполняют соответственно в блоке-разделителе и блоке-окислителе при частичном заполнении их расплавом металла, за счет разности плотностей обеспечивают подачу оксида металла из блока-разделителя в блок-окислитель и поступление расплава металла из блока-окислителя в блок-разделитель.

2. Способ по п. 1, отличающийся тем, что твердое органическое сырье подают под уровень оксида металла объемом не более 20% от объема расплава металла в блоке-разделителе.

3. Способ по п. 1, отличающийся тем, что жидкое органическое сырье подают под уровень оксида металла со скоростью не более 0,5 мл/мин на 1 л расплава металла в блоке-разделителе.

4. Способ по п. 1, отличающийся тем, что газообразное органическое сырье подают под уровень оксида металла со скоростью не более 100 мл/мин на 1 л расплава металла в блоке-разделителе.

5. Способ по п. 1, отличающийся тем, что в качестве расплава металла используют свинец или свинцово-висмутовый сплав с содержанием свинца в расплаве не менее 40%.



 

Похожие патенты:

Изобретение относится к способу и системе для извлечения диоксида углерода на установке для синтеза метанола из углеводородного газа или синтеза бензина из углеводородного газа через метанол.
Изобретение может быть использовано в химической промышленности. Подвергают переработке дистиллерную жидкость содового производства, полученную после обработки фильтровой жидкости гидроксидом кальция.

Изобретение относится к способу преобразования углерода в оксид углерода. Данный способ включает приведение углерода в контакт с паром в присутствии материала со структурой типа карнегиита, имеющего формулу (Na2O)xNa2[Al2Si2O8], где 0<х≤1.

Изобретение может быть использовано в химической промышленности. Способ совместного получения хлористого кальция и углекислого газа включает взаимодействие кальцийсодержащего сырья, включающего карбонат кальция, с 20-36% соляной кислотой, подаваемой дозировано.

Изобретение относится к улучшенному способу конверсии моноксида углерода СО и воды Н2О в диоксид углерода СO2 и водород Н2, который включает стадии связывания моноксида углерода из газовой фазы первым растворителем с получением формиата НСОО-, разложение формиата НСОО- и отделение образующегося водорода Н2.
Изобретение относится к химической промышленности. Газовую смесь для сепарации высокосернистых компонентов газа подвергают процессу разделения, при котором образуется высокосернистый газ, содержащий диоксид углерода и соединения серы.

Изобретение относится к газожидкостному контактному аппарату. Газожидкостный контактный аппарат для распыления жидкости сверху вниз в контактной колонне, в которой газ перемещается и проходит таким образом, что газ, перемещающийся снизу вверх, приходит в непосредственный контакт с жидкостью, указанный газожидкостный контактный аппарат содержит: пристеночные форсунки, расположенные вдоль поверхности стенки в контактной колонне для распыления жидкости внутри контактной колонны, и форсунки для диспергирования жидкости, расположенные внутри контура, образованного пристеночными форсунками в контактной колонне, для равномерного распыления жидкости внутри контактной колонны, при этом форсунки для диспергирования жидкости и пристеночные форсунки включают форсунки двух или более типов, которые используются в соответствии со скоростью потока газа.
Изобретение относится к способу эксплуатации электростанции IGCC с интегрированным устройством для отделения CO2. При этом способе технологический газ с содержанием Н2 и СO2 разделяют посредством адсорбции с переменным давлением (PSA) на технически чистый водород и фракцию с высоким содержанием CO2, причем фракция с высоким содержанием СО2 выделяется в результате снижения давления в виде отходящего газа установки PSA.

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода.

Изобретение относится к способу утилизации конденсата, образующегося на спиртзаводах при выпаривании фугата (фильтрата) послеспиртовой барды и кормовых дрожжей, который может быть использован в пищевой, химической, микробиологической, комбикормовой и других отраслях промышленности. Способ заключается в очистке конденсата в мембранных установках с обратноосмотическими мембранными элементами с селективностью по NaCl 99,0-99,9% с рециклом обратноосмотического пермеата в спиртовое производство и утилизацией обратноосмотического ретентата следующими методами раздельно или в оптимальном их сочетании: использованием в количестве 5-25% в качестве добавки при сжигании газообразного топлива; путем добавления в количестве 5-50% к мазуту и другому жидкому топливу, совместного диспергирования и эмульгирования с последующим сжиганием водотопливных эмульсий; окислением до безвредных продуктов в установках сверхкритического водного окисления (СКВО); добавлением в количестве 0,05-0,1% по объему в барду, ее фугаты или фильтраты при выращивании кормовых дрожжей. Предлагаемое изобретение позволяет экологически чистым, бессточным, замкнутым и самоокупаемым способом обезвредить конденсат вакуум-выпарных установок, эксплуатируемых спиртзаводами на стадии выпаривания фугата или фильтрата послеспиртовой барды, а также кормовых дрожжей, выращиваемых на барде. 2 ил., 3 табл.

Группа изобретений относится к химической промышленности. Для получения диоксида углерода обеспечивают технологический газ (22), содержащий углеводород. Сжигают углеводород в подсистеме сжигания (12) с получением электрической энергии (24) и потока продуктов сгорания (26), содержащего диоксид углерода и воду. В первой подсистеме отделения (16) за счет физической адсорбции отделяют первое количество диоксида углерода (50) от потока продуктов сгорания (48). Во второй подсистеме отделения (18), расположенной последовательно и ниже по потоку относительно первой подсистемы отделения, за счет химической абсорбции отделяют второе количество диоксида углерода (60) от потока продуктов сгорания (52). Обеспечивается повышение эффективности отделения диоксида углерода из технологического газа. 2 н. и 22 з.п. ф-лы, 5 ил.

Изобретение относится к переработке парниковых газов и, в частности, к производству метана и диоксида углерода, восстановленных из парниковых газов производящих их мест, например, полигонов захоронения отходов. Техническим результатом является переработка парниковых газов. Система содержит подсистему сбора, выполненную с возможностью сбора газовой смеси, содержащей диоксид углерода и метан, подсистему сжигания, выполненную с возможностью сжигания указанного метана в указанной газовой смеси и выпуска газообразного потока продуктов сгорания, причем указанная подсистема сжигания вырабатывает электрическую энергию, воду и дополнительное количество указанного диоксида углерода; воздуходувку, выполненную с возможностью введения окружающего воздуха в указанный газообразный поток продуктов сгорания ниже по потоку относительно подсистемы сжигания, при этом окружающий воздух охлаждает газообразный поток продуктов сгорания и разбавляет указанный диоксид углерода в газообразном потоке продуктов сгорания, образуя таким образом смесь окружающего воздуха и продуктов сгорания, причем указанный газообразный поток продуктов сгорания имеет первую концентрацию диоксида углерода, а указанная смесь окружающего воздуха и продуктов сгорания имеет вторую концентрацию диоксида углерода, при этом вторая концентрация диоксида углерода меньше первой концентрации диоксида углерода, причем указанная вторая концентрация диоксида углерода находится в диапазоне от по меньшей мере 5% по массе до величины меньшей, чем первая концентрация диоксида углерода, и подсистему отделения, выполненную с возможностью отделения указанного диоксида углерода из указанной смеси окружающего воздуха и продуктов сгорания и содержащую: теплообменник, расположенный с возможностью контакта со смесью окружающего воздуха и продуктов сгорания и выполненный с возможностью понижения температуры указанной смеси окружающего воздуха и продуктов сгорания, образуя таким образом охлажденную смесь, осушитель, расположенный с возможностью контакта с охлажденной смесью и выполненный с возможностью удаления из нее по меньшей мере части воды, образуя таким образом охлажденную и осушенную смесь, и материал для физической абсорбции, расположенный с возможностью контакта с охлажденной и осушенной смесью и выполненный с возможностью удаления по меньшей мере части указанного диоксида углерода из охлажденной и осушенной смеси. 2 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к химической промышленности и охране окружающей среды и может быть использовано при переработке и утилизации органического сырья и отходов. Оксид металла генерируют в блоке-разделителе 2 окислением расплава металла кислородсодержащим газом, подаваемым методом барботажа. За счет разности плотностей обеспечивают подачу полученного оксида металла из блока-разделителя 2 в блок-окислитель 3 и поступление расплава металла из блока-окислителя 3 в блок-разделитель 2. Термическую обработку органического сырья проводят в блоке-окислителе 3 при 400-1200°С. В качестве расплава металла используют свинец или свинцово-висмутовый сплав с содержанием свинца в расплаве не менее 40. Твердое органическое сырье подают в блок-окислитель 3 под уровень оксида металла объемом не более 20 от объема расплава металла. Жидкое органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 0,5 млмин на 1 л расплава металла. Газообразное органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 100 млмин на 1 л расплава металла. Полученный диоксид углерода с чистотой 99 об. отводят через высокотемпературный газовый фильтр 1. Изобретение обеспечивает расширение функциональных возможностей за счёт использования различных газов, содержащих кислород. 4 з.п. ф-лы, 1 ил.

Наверх