Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на днище поршня путем анодно-катодно-микродугового оксидирования, при этом покрытие содержит твердые включения фазы α-Al2O3, диспергированные в матрице из фазы γ-Al2O3 и соединениях муллита 3⋅Al2O3⋅SiO2. Покрытие наносят в электролите, состоящем из раствора гидрата окиси калия, раствора стекла натриевого жидкого и дистиллированной воды, причем анодом является поршень, а катодом - пластина, закрепленная на расстоянии 90-100 мм от днища поршня, которое располагают параллельно катоду, при этом процесс осуществляют в течение 90-120 мин при температуре электролита 298°-318°K, напряжении на аноде 295-315 B, поверхностной плотности тока 16-17 А/дм2, при соотношении катодного и анодного токов - 1:1, причем покрытие наносят на днище поршня до достижения толщины покрытия 100-160 мкм, исключая область кромки шириной 2-3 мм по периметру днища, после чего с поверхности покрытия механическим путем удаляют соединения муллита до достижения толщины покрытия 50÷110 мкм. Способ позволяет получить теплозащитное покрытие на днище поршня, способное при термоциклических нагрузках защищать поршень от разрушения, со снижением трудоемкости и энергоемкости способа.

 

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов.

Известен способ тепловой защиты днища поршня, включающий нанесение газоплазменных покрытий, а также покрытий в виде эмалей, керметов и других жаростойких материалов, предназначенных для снижения тепловой напряженности деталей цилиндропоршневой группы (патент US 3552370, МПК С23С 4/08, опубл. 05.01.1971).

Известен способ обработки поршней двигателей внутреннего сгорания из алюминия, титана и их сплавов, включающий оксидирование в растворе электролита. Донную часть поршня помещают в раствор электролита на основе ортофосфорной кислоты и проводят оксидирование, при этом одновременно перемещают поршень относительно свободной поверхности электролита по мере формирования покрытия на донной части поршня и сжатым воздухом охлаждают ее противоположную сторону (патент RU 2439211, МПК C25D 11/08, опубл. 10.01.2012 г).

Недостатком известных способов является технологическая сложность получения покрытия, а также сложность химического состава и недостаточная адгезионная прочность получаемого покрытия.

Наиболее близким к заявляемому является способ нанесения покрытия на поверхности деталей, составляющих камеру сгорания двигателя внутреннего сгорания с уменьшенным теплоотводом (патент RU 2168039, МПК F02B 77/11, опубл. 27.05.2001). На детали наносят первый слой покрытия путем анодно-катодно-микродугового оксидирования, а затем на него наносят второй слой в виде пленки методом ионного осаждения. При этом первый слой покрытия выполнен из многофазного кристаллического пористого материала, а второй слой покрытия, обращенный к камере сгорания, выполнен в виде сплошной пленки из тугоплавкого материала. Первый слой покрытия, имеющий толщину 0,1-0,3 мм, содержит твердые включения фазы α-Al2O3, диспергированные в матрице из фазы γ-Al2O3 и соединениях муллита 3⋅Al2O3⋅SiO2, а второй слой покрытия выполнен толщиной 2-20 мкм из материала со степенью черноты не менее 0,8 в интервале рабочих температур. Покрываемую деталь погружают в электролитическую ванну, наполненную электролитом, состоящим из основания - 1-10% раствора гидрата окиси калия по ГОСТ 9285-78 и химического реактива - 1-10% раствора стекла натриевого жидкого Na2SiO3 по ГОСТ 13078-81. Процесс, в котором деталь является анодом, а ванна, куда она погружена - катодом, ведут при температуре электролита 303-333°K, при пульсирующем электрическом токе частотой 50 Гц, напряжением 400-600 B, поверхностной плотности тока 5-30 А/дм2. Соотношение катодного и анодного токов находится в пределах 1,0-1,3. Продолжительность процесса зависит от толщины наносимого покрытия и составляет 60-200 мин.

Недостатком прототипа является технологическая сложность получения защитного покрытия, выраженная в необходимости послойного нанесения покрытия разными методами, что повышает трудоемкость процесса обработки. Кроме того, для получения покрытия заданной толщины необходимо добиваться высоких значений напряжения, вплоть до 600 B, что увеличивает энергопотребление.

Задачей изобретения является получение теплозащитного покрытия на днище поршня, способного при термоциклических нагрузках защищать поршень от разрушения, а также снижение трудоемкости и энергоемкости способа.

Технический результат - улучшение тепловой защиты поршня за счет снижения температуры внутренней поверхности центральной части днища поршня на величину до 100°C и снижения температуры внутренней поверхности днища поршня в области кромки на величину не менее 45°C в процессе работы двигателя внутреннего сгорания.

Задача решается, а технический результат достигается способом тепловой защиты поршня двигателя внутреннего сгорания, включающим нанесение теплоизолирующего покрытия на днище поршня путем анодно-катодно-микродугового оксидирования, при этом покрытие содержит твердые включения фазы α-Al2O3, диспергированные в матрице из фазы γ-Al2O3 и соединениях муллита 3⋅Al2O3⋅SiO2. В отличие от прототипа покрытие наносят в электролите, состоящем из раствора гидрата окиси калия, раствора стекла натриевого жидкого и дистиллированной воды, причем анодом является поршень, а катодом - пластина, закрепленная на расстоянии 90-100 мм от днища поршня, которое располагают параллельно катоду, при этом процесс осуществляют в течение 90-120 мин при температуре электролита 298°-318°K, напряжении на аноде 295-315 B, поверхностной плотности тока 16-17 A/дм2, при соотношении катодного и анодного токов - 1:1, причем покрытие наносят на днище поршня до достижения толщины покрытия 100-160 мкм, исключая область кромки шириной 2-3 мм по периметру днища, после чего с поверхности покрытия механическим путем удаляют соединения муллита до достижения толщины покрытия 50÷110 мкм.

Технический результат достигается благодаря следующему.

При заявленных режимах и условиях обработки и в зависимости от времени обработки на днище поршня за исключением кромки формируется покрытие с равномерной толщиной 50÷410 мкм. Данное покрытие в процессе работы двигателя внутреннего сгорания улучшает тепловую защиту поршня, а именно: позволяет выровнять температуру на днище поршня, снизить температуру внутренней поверхности центральной части поршня на величину до 100°C, а температуру внутренней поверхности днища поршня в области кромки на величину не менее 45°C. Это позволит противостоять разрушению поршня при термоциклических нагрузках.

Осуществление изобретения раскрыто в примере конкретного выполнения.

Пример конкретного выполнения способа.

Заявленным способом было получено теплозащитное покрытие на днище поршня, изготовленного из алюминиевого сплава АК12Д. Покрытие наносили в электролите, состоящем из раствора гидрата окиси калия, раствора стекла натриевого жидкого и дистиллированной воды. Поршень погружали в электролит в приспособлении, закрывающем область кромки. Днище поршня располагали параллельно катоду на расстоянии 100 мкм, при этом нанесение покрытия осуществляли в течение 90 мин при температуре электролита 320°K, напряжении на аноде 295-315 B, поверхностной плотности тока 16-17 A/дм2, при соотношении катодного и анодного токов - 1:1, причем покрытие наносили на днище поршня, исключая область кромки на расстоянии 3 мм по его периметру.

Слой полученного покрытия имел толщину 150 мкм и содержал включения фазы α-Al2O3, γ-Al2O3 и соединения муллита 3⋅Al2O3⋅SiO2. Далее с поверхности покрытия механическим путем удаляли соединения муллита до толщины 100 мкм.

Экспериментальные исследования показали, что данная толщина слоя является оптимальной с точки зрения обеспечения наилучших теплозащитных свойств поверхности днища поршня двигателя внутреннего сгорания. Полученное покрытие позволяет снизить температуру внутренней поверхности центральной части днища поршня на величину до 100°C, а температура внутренней поверхности днища поршня в области кромки снижается на величину не менее 45°C.

Покрытие позволяет противостоять разрушению поршня при термоциклических нагрузках, что ведет к повышению срока службы поршня и увеличению надежности двигателя в целом.

Таким образом, способ позволяет получить теплозащитное покрытие на днище поршня, способное при термоциклических нагрузках защищать поршень от разрушения, со снижением трудоемкости и энергоемкости способа.

Способ тепловой защиты поршня двигателя внутреннего сгорания, включающий нанесение теплоизолирующего покрытия на днище поршня путем анодно-катодно-микродугового оксидирования, при этом покрытие содержит твердые включения фазы α-Al2O3, диспергированные в матрице из фазы γ-Al2O3 и соединениях муллита 3⋅Al2O3⋅SiO2, отличающийся тем, что покрытие наносят в электролите, состоящем из раствора гидрата окиси калия, раствора стекла натриевого жидкого и дистиллированной воды, причем анодом является поршень, а катодом - пластина, закрепленная на расстоянии 90-100 мм от днища поршня, которое располагают параллельно катоду, при этом процесс осуществляют в течение 90-120 мин при температуре электролита 298°-318°K, напряжении на аноде 295-315 В, поверхностной плотности тока 16-17 А/дм2, при соотношении катодного и анодного токов - 1:1, причем покрытие наносят на днище поршня до достижения толщины покрытия 100-160 мкм, исключая область кромки шириной 2-3 мм по периметру днища, после чего с поверхности покрытия механическим путем удаляют соединения муллита до достижения толщины покрытия 50÷110 мкм.



 

Похожие патенты:

Изобретение может быть использовано в устройствах дозирования топлива. Поршень для устройства дозирования топлива, изготовленный из алюминиевого сплава, содержит упрочненную интенсивной пластической деформацией головку (1) с ультрамелкозернистой структурой материала.

Изобретение может быть использовано в двигателях внутреннего сгорания. Цилиндропоршневая группа включает в себя поршень и гильзу (8) цилиндров.

Изобретение может быть использовано в двигателях внутреннего сгорания. Двигатель внутреннего сгорания содержит четыре полых цилиндра (2), каждый из которых снабжен поршнем (1), установленным в полости цилиндра (2) и соосно с ним, входом для поступления в полость цилиндра (2) свежего рабочего тела и выходом для удаления из полости цилиндра (2) отработанного рабочего тела.

Изобретение относится к машиностроению, в частности двигателестроению, и может быть использовано в двигателях внутреннего сгорания (далее ДВС). .

Изобретение относится к двигателестроению, а именно к области тепловых двигателей и может быть использовано, в частности в двигателях внутреннего сгорания. .

Изобретение относится к двигателестроению, а именно к деталям двигателей с поверхностным покрытием. .

Изобретение относится к области гальванотехники и может быть использовано для создания противовирусных устройств. Противовирусное алюминиевое устройство, способное инактивировать вирус, содержит анодную оксидную пленку, полученную анодированием алюминиевого материала, и имеет поры, внутри которых присутствует противовирусное неорганическое соединение.

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде.

Изобретение может быть использовано при изготовлении двигателя внутреннего сгорания. В двигателе (10) внутреннего сгорания на всей стенке, выходящей в камеру сгорания (NS), или на ее части сформировано анодно-оксидированное пленочное покрытие (61), (62), (63), (64).

Изобретение относится к области электрохимических процессов, а конкретно к анодному окислению металлов и полупроводников. .

Изобретение относится к способам получения магнитных материалов, в частности магнитоактивных оксидных покрытий на вентильных металлах, преимущественно алюминии и его сплавах и титане и его сплавах, и может найти применение в конструкциях электромагнитных экранов и поглотителей электромагнитного излучения.

Изобретение относится к сплаву системы Al-Mg-Si, способу его изготовления, а также к изготовленному из него конструктивному элементу. .
Изобретение относится к области восстановления изношенных деталей из алюминиевых сплавов и может быть использовано для восстановления и защиты от коррозии привалочных плоскостей головок блока двигателей внутреннего сгорания из алюминиевых сплавов.

Изобретение относится к бронезащитной структуре и способу ее производства. Бронезащитная структура состоит из пористого открытоячеистого алюминия, содержащего 60-70% открытых взаимосообщающихся пор с диаметром в диапазоне от 0,14 мм до 0,5 мм. На поверхность пор микродуговым оксидированием нанесен слой оксида алюминия с последующей пропиткой в эпоксидной смоле. Способ производства бронезащитной структуры на основе пористого алюминия заключается в том, что заготовки из пористого открытоячеистого алюминия помещаются в емкость с однокомпонентным электролитом с жидким стеклом и подвергаются микродуговому оксидированию в анодно-катодном режиме с падающей мощностью в течение не менее 120 минут. При оксидировании на заготовках из пористого алюминия осуществляется выступ с прямоугольным профилем со сторонами 10×150 мм, который служит токопроводом для подвода электрического тока. Применяют в процессе оксидирования системы принудительного охлаждения и компрессора для циркулирования электролита с давлением не менее 0,8 МПа. Достигается повышение стойкости и степени энергопоглощения бронезащитным материалом при воздействии нескольких поражающих элементов одновременно. 2 н. и 1 з.п. ф-лы, 3 ил.
Наверх