Стенд для испытаний на ударные воздействия приборов и оборудования

Изобретение относится к устройствам для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в том числе и пространственных систем. Стенд состоит из приспособления в виде панели с установленными на ней испытуемой аппаратурой и регистрирующими датчиками, пиротехнических устройств, при этом панель выполнена в виде сменной металлической плиты, установленной на пневмоопоры с помощью зажимов, а пиротехнические устройства выполнены неразделяемыми с резьбой на цилиндрическом корпусе и подвижным сменным бойком, которые установлены в переходные элементы, выполненные в виде полого цилиндра с днищем с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой для крепления пиротехнического устройства, и с фланцем с отверстиями с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры, при этом оси симметрии бойков лежат в срединной плоскости панели или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка. Технический результат заключается в повышении качества испытаний приборов и оборудования на ударные воздействия высокой интенсивности в более широком диапазоне воспроизводимых нагрузок. 5 ил., 1 табл.

 

Изобретение относится к устройствам для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в том числе и пространственных, систем, состоящих из функционально связанных приборов, автономное испытание каждого из которых недостаточно (остаются, например, неотработанными функциональные связи между приборами при ударных воздействиях).

Существует достаточно много различных стендов для испытаний приборов и оборудования на ударные воздействия. К примеру, это вибрационные электродинамические стенды, стенды с падающими столами и т.д. (Вибрации в технике. Справочник (в 6-ти томах). М.: "Машиностроение". Т. 5: Измерения и испытания. / Под ред. М.Д. Генкина, 1981 г. - 496 с.; стр. 476-477). В настоящее время наибольшее распространение при испытаниях находят системы на базе вибростендов, однако они в силу своих конструктивных особенностей не обеспечивают воспроизведения высокоинтенсивного нагружения крупногабаритных и массивных конструкций. Требования к стендам особенно высоки при необходимости воспроизведения воздействий большой интенсивности, малой длительности и сложной формы.

Наиболее близким (прототип) является стенд для испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, состоящий из приспособления для крепления аппаратуры, вывешенного на гибких тросах с установленными на нем аппаратурой и регистрирующими датчиками (патент РФ №2269105, G01M 7/08 от 20. 09. 2005 г.). В качестве приспособления используют сотовую панель с закладными для установки испытуемой аппаратуры, а источники ударных воздействий выполнены в виде многослойных амортизационных стержней с пиротехническими устройствами. Слои стержней выполнены из материалов с различной акустической податливостью, при этом амортизационный стержень с пиротехническим устройством соединяется с сотовой панелью через переходное устройство, выполненное виде стакана на цилиндрической ножке.

Данное решение (прототип) имеет ряд недостатков. Испытываемая на такой системе аппаратура может устанавливаться только в штатные закладные, что часто не позволяет создать необходимые воздействия на плите и объект испытаний может при этом значительно перегружаться/недогружаться из-за грубой имитации воздействия. Кроме того, при вывешивании плиты на амортизационных стержнях сложно проводить испытания громоздкого пространственного оборудования (например, ферм для крепления приборов), а применение разрывных болтов в качестве источников ударных воздействий существенно сужает диапазон воспроизводимых нагрузок.

Задачей (техническим результатом) изобретения является увеличение качества испытаний приборов и оборудования (в том числе и крупногабаритного) на ударные воздействия высокой интенсивности в более широком диапазоне воспроизводимых нагрузок.

Поставленная задача достигается тем, что в стенде для испытаний приборов и оборудования на ударные воздействия, состоящем из приспособления в виде панели с установленными на ней испытуемой аппаратурой, регистрирующими датчиками и пиротехническими устройствами, панель выполнена в виде сменной металлической плиты, установленной на пневмоопоры с помощью зажимов, а пиротехнические устройства выполнены неразделяемыми с резьбой на цилиндрическом корпусе и подвижным сменным бойком, которые установлены в переходные элементы, выполненные в виде полого цилиндра с днищем с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой для крепления пиротехнического устройства, и с фланцем с отверстиями с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры, при этом оси симметрии бойков лежат в срединной плоскости панели или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка.

Суть заявленного решения поясняется чертежами, где на фиг. 1 показан общий вид стенда для проведения ударных испытаний, на фиг. 2 изображено сечение стенда по А-А, на фиг.3 более подробно показано неразделяемое пиротехническое устройство, на фиг. 4 показана пространственная ферма с приборным блоком, установленная на стенде для испытаний, на фиг. 5 показан ударный спектр ускорений, полученный при ударе в плоскости крепления панели.

Стенд (фиг. 1) состоит из приспособления 1 (сменная металлическая панель) для установки испытуемых приборов и оборудования 2. Сменная панель 1 установлена на пневмоопоры 3 с помощью зажимов 4. На панели установлены контрольные датчики (акселерометры) 5. Стенд также включает пиротехнические устройства 6, установленные на регулируемые опоры 7. При этом на фиг. 2 показано сечение А-А стенда. На фиг. 3 более подробно показано неразделяемое регулируемое пиротехническое устройство 6 с резьбой 8 на цилиндрическом корпусе 9 и подвижным сменным бойком 10, которые установлены в переходные элементы, выполненные в виде полого цилиндра 11 с днищем 12 с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой 13 для крепления пиротехнического устройства с пиропатроном 14, и фланцем 15 с отверстиями 16 с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры 7, при этом оси симметрии бойков лежат в срединной плоскости плиты или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка. Фиг. 4 иллюстрирует пример практического использования стенда для испытания на ударные нагрузки крупногабаритного объекта - пространственной фермы с закрепленной на ней приборным блоком 17, где расстояние δ от бойка до металлической панели 1 должно быть меньше хода бойка

Стенд работает следующим образом.

До начала испытаний определяются необходимое количество пиротехнических устройств 6 для формирования необходимого ударного воздействия и их расположение относительно панели 1 (расстояние от панели). При подаче напряжения на пиропатрон 14 происходит его срабатывание, образуются пороховые газы, происходит движение сменного бойка 10 до соударения с панелью 1, на которой установлен объект испытаний (приборы и оборудование). Использование различных пиропатронов 14, сменных бойков 10 (меняют материалы, форму, массу бойка) позволяет изменять форму импульса ударного воздействия. Кроме того, изменяя расстояние δ от бойка 10 до панели 1 (при одном и том же пиропатроне), меняют и максимальную скорость соударения бойка с панелью (объектом испытаний) и соответственно величину импульса ударного нагружения панели. При этом срабатывание пиротехнических устройств можно производить как одновременно, так и в любой последовательности. Очевидно, что ударное воздействие должно прикладываться в плоскости симметрии панели, чтобы обеспечить образование симметричной продольной волны при ударном воздействии по торцам панели и поперечных волн при ударном воздействии перпендикулярно плоскости крепления оборудования. Это достигается использованием регулируемых опор 7, на которые пиротехническое устройство 6 может быть установлено в разных местах. Расстояние от бойка 10 до панели 1 регулируется за счет резьбы 13 в переходном элементе, устанавливаемом на регулируемой опоре 7 через фланец 15. Использование сменной панели для расположения оборудования позволяет подобрать основную частоту колебаний, возникающую в панели за счет отражения от ее границ. Применение пневмоопор 3 для крепления сменной панели с помощью зажимов 4 обеспечивает достаточную жесткость испытательной системе при монтаже панели с приборами и оборудованием, отсутствие больших перемещений после ударного воздействия, а также обеспечивает приложение ударного воздействия в плоскости панели.

Кроме того, наличие зажимов позволяет быстро проводить монтаж/демонтаж панели. При этом собственные частоты пневмоопор остаются достаточно низкими, чтобы влиять на воспроизводимые ударные воздействия. Возникающие ускорения на объекте испытаний регистрируются датчиками ускорений 5. За счет подбора мощности пиропатронов, массы материала и формы бойка, а также количества одновременно срабатывающих пиротехнических устройств создают необходимое ударное воздействие на объекте испытаний. Процедура подбора размеров панели, количества пиротехнических устройств, расстояний от пиротехнических устройств до панели относится к «ноу-хау» изобретения, и в представленных материалах не рассматривается.

Пример практического исполнения

На фиг. 4 показана пространственная ферма с приборным блоком 17. В таблице приведены квалификационные уровни ударных нагрузок. Испытания проводились в соответствии с таблицей последовательно вдоль каждой из трех взаимно перпендикулярных осей.

Для обеспечения необходимого ударного спектра была применена следующая процедура. Для установки фермы с приборным блоком использовалась алюминиевая панель размером 800×800×20 мм, которая устанавливалась на четыре стандартные пневматические опоры Я10Н2,5 с помощью струбцин. Масса фермы с приборным блоком ~32 кг, центр масс прибора находится на высоте 620 мм. Точки контроля - в местах крепления лапок фермы. Использовались акселерометры ABC 052. Пироустройство имеет полусферический латунный боек массой около 100 г. Для примера на фиг. 5 показан (график "в") ударный спектр ускорений, полученный на стенде при ударе в плоскости крепления панели. Зазор δ равен 14 мм. Несущая частота составляла 3.5 тыс. Гц. На графике "а" показаны требуемые значения ударного спектра ускорений.

Погрешность при формировании режима испытаний не превысила во всем диапазоне частот 3 дБ при допустимой величине в 6 дБ.

Таким образом, доказана возможность качественно проводить испытание приборов и оборудования (в том числе, как в рассмотренном примере - крупногабаритного) на ударные воздействия высокой интенсивности в широком диапазоне воспроизводимых нагрузок.

Стенд для испытаний приборов и оборудования на ударные воздействия, состоящий из приспособления в виде панели с установленными на ней испытуемой аппаратурой, регистрирующими датчиками и пиротехническими устройствами, отличающийся тем, что панель выполнена в виде сменной металлической плиты, установленной на пневмоопоры с помощью зажимов, а пиротехнические устройства выполнены неразделяемыми с резьбой на цилиндрическом корпусе и подвижным сменным бойком, которые установлены в переходные элементы, выполненные в виде полого цилиндра с днищем с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой для крепления пиротехнического устройства, и с фланцем с отверстиями с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры, при этом оси симметрии бойков лежат в срединной плоскости панели или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка.



 

Похожие патенты:

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик.

Изобретение относится к области прикладной газовой динамики, а именно к способам генерирования воздушной ударной волны (ВУВ) путем создания газовой смеси в эластичной оболочке, расположенной в ударной трубе, и подрыва, и может быть применено для испытаний конструкций и объектов на механическое действие импульса давления.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик.

Изобретение относится к машиностроению и может быть использовано при экспериментальной отработке объектов, в состав которых входит разрушаемая мембрана. Перед погружением объекта, содержащего разрушаемую мембрану, в стенд рассчитывают величину гидростатического давления, давления наддува стенда, объем его газовой подушки, диаметр дренажного отверстия и градиент изменения давления в стенде при сбросе его в атмосферу.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, а также регистрирующую аппаратуру, при этом на основании устанавливают исследуемый объект, например аппаратуру летательных аппаратов, в виде двух одинаковых бортовых компрессоров для получения сжатого воздуха.

Изобретение относится к машиностроению к способам определения эффективности взрывозащиты в испытательном макете взрывоопасного объекта. В боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения.

Изобретение относится к взрывным метающим устройствам, которые могут быть использованы при испытаниях военной техники. Способ задержки прорыва продуктов взрыва по краям метаемой пластины-ударника во взрывном метающем устройстве включает заглубление краев пластины-ударника в пазы, выполненные в примыкающих к ней элементах взрывного метающего устройства.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. Систему мониторинга с обработкой полученной информации об опасной зоне используют в испытательном боксе.

Изобретение относится к области испытания материалов, к исследованиям поведения веществ при динамическом воздействии на них и может быть использовано в любой области техники, где необходимо знание, например, прочностных свойств перспективных конструкционных материалов, жидкостей, газов при динамических нагрузках.

Изобретение относится к машиностроению. Установка содержит взрывной сосуд, в котором производится взрыв горючей смеси.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором установлено два одинаковых бортовых компрессора, при этом один - на штатных резиновых виброизоляторах, а другой - на исследуемой двухмассовой системе виброизоляции.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик.

Изобретение относится к измерительной технике, в частности к способам определения параметров удара о преграду зерен алмазно-абразивных порошков, имеющих неправильные геометрические формы.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, а также регистрирующую аппаратуру, при этом на основании устанавливают исследуемый объект, например аппаратуру летательных аппаратов, в виде двух одинаковых бортовых компрессоров для получения сжатого воздуха.

Изобретение относится к испытаниям на удар, в частности, к системам и методам для моделирования мощного пиротехнического удара в испытываемом компоненте или изделии.

Изобретение относится к испытательной технике и может быть использовано в пороховых баллистических установках (ПБУ). ПБУ содержит ствол для размещения в нем метаемого объекта (МО), пороховой заряд (ПЗ), зарядную камеру, соединенную с дополнительной камерой через отверстие с диаметром в зависимости от обеспечения равенства максимальных значений давлений в зарядной и дополнительной камерах в процессе разгона МО.

Изобретение относится к взрывным метающим устройствам, которые могут быть использованы при испытаниях военной техники. Способ задержки прорыва продуктов взрыва по краям метаемой пластины-ударника во взрывном метающем устройстве включает заглубление краев пластины-ударника в пазы, выполненные в примыкающих к ней элементах взрывного метающего устройства.

Изобретения относятся к испытательной технике и могут быть использовано для испытания конструкций на воздействие интенсивных механических нагрузок колебательного характера.

Изобретение относится к оборонной технике и предназначено для проведения испытаний лицевых металлических преград - основы гетерогенных защитных структур. Способ включает выстреливание бойков со скоростью, большей скорости удара, определение и замер глубины ударного внедрения бойка диаметром d в поверхность металла h (глубина каверны).

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны. Сущность: емкость наполняют водой, размещают в ней подводный аппарат с регистратором и подрывают заряд взрывчатого вещества. Заряд взрывчатого вещества располагают в воздухе над поверхностью воды, взрывают его, создавая воздушную ударную волну, которая при взаимодействии с поверхностью воды генерирует подводную ударную волну, покрывающую поверхность корпуса подводного аппарата. Поверхность емкости выстилают водонепроницаемой прослойкой, акустическое сопротивление которой меньше акустического сопротивления воды, а информацию о сотрясениях на элементах насыщения подводного аппарата фиксируют регистратором в режиме реального времени. Технический результат: расширение функциональных возможностей за счет создания в лабораторных условиях возможности для изучения сотрясений на элементах внутреннего насыщения полномасштабного подводного аппарата во время воздействия подводной ударной волны при использовании емкости с водой малых размеров, соизмеримых с ПА. 1 ил.
Наверх