Способ определения прочности сцепления металлических покрытий со стальной поверхностью



Способ определения прочности сцепления металлических покрытий со стальной поверхностью
Способ определения прочности сцепления металлических покрытий со стальной поверхностью
Способ определения прочности сцепления металлических покрытий со стальной поверхностью

 


Владельцы патента RU 2616436:

Чурляева Ольга Николаевна (RU)
Татаркин Денис Юрьевич (RU)
Бирюков Владимир Павлович (RU)
Фишков Алексей Анатольевич (RU)
Гудушаури Элгуджа Георгиевич (RU)

Изобретение относится к области машиностроения, в частности к способам оценки прочности сцепления металлических покрытий со стальной поверхностью, и может быть использовано для повышения качества и надежности выпускаемой продукции. Сущность: осуществляют нанесение покрытия в виде кольцевого пояска на цилиндрический образец, механическую обработку покрытия, установку образца в матрицу с цилиндрическим отверстием и отрыв покрытия от подложки путем продавливания цилиндрического образца сквозь отверстие в матрице с последующим определением величины максимальной нагрузки, необходимой для отрыва покрытия. Перед определением максимальной нагрузки с двух сторон кольцевого пояска протачивают торцы с образованием углубления на цилиндрической поверхности образца с углублением h=(1,2÷1,5)r и шириной b=(3÷4)r, где h - углубление на цилиндрической поверхности, b - ширина канавки и r - радиус проточного резца. Технический результат: повышение точности измерения прочности сцепления металлических покрытий со стальной поверхностью. 3 ил.

 

Изобретение относится к области машиностроения, частности к способам оценки прочности сцепления металлических покрытий со стальной поверхностью, и может быть использовано для повышения качества и надежности выпускаемой продукции.

Известен способ определения прочности сцепления металлических покрытий со стальной поверхностью, включающий нанесение слоя на металлическую подложку, отрыв покрытия от подложки с определением максимальной нагрузки, необходимой для отрыва слоя с последующим вычислением значения сцепления по величине максимальной нагрузки (патент РФ №2309397 по кл. G01N 19/04 от 2006 г.).

Недостатком данного способа является сложность технологического процесса определения прочности сцепления, снижающего оценку точности измерения величины сцепления.

Наиболее близким техническим решением по совокупности существенных признаков является способ оценки прочности сцепления металлических покрытий со стальной поверхностью, включающий нанесение покрытия в виде кольцевого пояска на цилиндрический образец, механическую обработку покрытия, установку образца в матрицу с цилиндрическим отверстием и отрыв покрытия от подложки путем продавливания цилиндрического образца сквозь отверстие в матрице и по величине нагрузки определение предела прочности сцепления нанесенного покрытия (патент РФ №2571308 по кл. G01N 19/04 от 02.12.2015 г.).

Недостатком данного способа является относительно низкая точность определения прочности сцепления металлических покрытий со стальной поверхностью, в результате чего искажается достоверность полученных результатов.

Задача, на решение которой направлено заявленное изобретение, заключается в повышении точности измерения прочности сцепления металлических покрытий со стальной поверхностью.

Поставленная задача решается за счет того, что в способе определения прочности сцепления металлических покрытий со стальной поверхностью, включающем нанесение покрытия в виде кольцевого пояска на цилиндрический образец, механическую обработку покрытия, установку образца в матрицу с цилиндрическим отверстием и отрыв покрытия от подложки путем продавливания цилиндрического образца сквозь отверстие в матрице с последующим определением величины максимальной нагрузки, необходимой для отрыва покрытия, перед определением максимальной нагрузки с двух сторон кольцевого пояска протачивают торцы с образованием углубления на цилиндрической поверхности образца с углублением h=(1,2÷1,5) r и шириной h=(3÷4) r, где h - углубление на цилиндрической поверхности, b - ширина канавки и r - радиус проточного резца.

На фиг. 1 представлен общий вид цилиндрического образца.

На фиг. 2 представлена иллюстрация канавки в виде проточки.

На фиг. 3 представлена иллюстрация испытания образца на прочность сцепления покрытия с металлической основой.

Образец 1 выполнен в виде цилиндра диаметром 12 мм и длиной 25 мм с нанесенным на его поверхность покрытием.

Нанесение покрытия осуществляется лазерным наплавлением покрытия 2 на цилиндрическую поверхность образца, при этом слой наносится на середину длины образца, оставляя концевые части образца не подвергнутые наплавлении, при этом ширина наплавленного слоя составляет 4 мм.

После этого производят проточку наплавленного слоя симметрично относительно торцов с двух сторон, выдерживая при этом ширину наплавленного слоя 2-4 мм, с образованием углубления по диаметру D образца на глубину h=(1,2÷1,5) r и ширину b=(3÷4) r, где r - радиус при вершине проточного или отрезного резца.

Затем образец одним концом вставляют в отверстие металлической основы 3. Диаметр отверстия и диаметр конца образца обеспечивают скользящую посадку образца в отверстии.

Осевое нагружение осуществляют до появления сдвига наплавленного слоя с последующим определением предела прочности сцепления при сдвиге по формуле:

τ=Р/π D ⋅ В,

где Р - величина осевого нагружения (Н),

τ - предел прочности (МПа),

D - диаметр образца (мм),

В - ширина наплавленного проточенного слоя (мм).

Предложенный способ определения прочности позволяет снизить погрешность измерения за счет выполнения проточки торцов с образованием углубления на цилиндрической поверхности образца h=(1,2÷1,5)r и шириной b=(3÷4)r. Выполнение проточки дает возможность получить более точного измерения В ширины наплавленного проточного слоя нагружаемого образца и, как следствие этого, точности измерения прочности сцепления покрытия.

Способ определения прочности сцепления металлических покрытий со стальной поверхностью, включающий нанесение покрытия в виде кольцевого пояска на цилиндрический образец, механическую обработку покрытия, установку образца в матрицу с цилиндрическим отверстием и отрыв покрытия от подложки путем продавливания цилиндрического образца сквозь отверстие в матрице с последующим определением величины максимальной нагрузки, необходимой для отрыва покрытия, отличающийся тем, что перед определением максимальной нагрузки, с двух сторон кольцевого пояска протачивают торцы с образованием углубления на цилиндрической поверхности образца с углублением h=(1,2÷1,5)r и шириной b=(3÷4)r, где h - углубление на цилиндрической поверхности, b - ширина канавки и r - радиус проточного резца.



 

Похожие патенты:

Изобретение относится к области медицины и предназначено для испытаний на прочность склеенных слоев зубной шины в виде каппы. Устройство для изготовления проб при определении прочности термосклеивания слоев многослойной защитной зубной шины в виде каппы выполнено в форме диска с диаметром 100±1 мм и высотой 10±0,1 мм, на торцевой стороне диска выполнен вырез прямоугольной формы с высотой 10±0,1 мм, шириной 24±0,1 мм и глубиной 1±0,1 мм, с отверстием под винт для крепления на нем металлической полосы толщиной 1±0,1 мм, шириной 24±0,1 мм и длиной 40±5 мм, изогнутой под углом 90°.

Изобретение относится к области механических испытаний трехслойных панелей авиационно-космического назначения с обшивками из полимерного композиционного материала (ПКМ) и сотовым заполнителем из металлического или неметаллического материала.

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия.

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности.

Изобретение относится к области исследования материалов, а именно к устройствам для испытания смазок/масел жидких или полужидких составов. Знание адгезионных характеристик и качеств таких видов смазочных сред является весьма важным для различных двигателей, систем смазывания механического оборудования, космических систем и ответственных подвижных узлов специальной техники, работающих в условиях сильно изменяющихся температур как положительных, так и отрицательных.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда.

Изобретение относится к области испытания материалов. Отличительной особенностью заявленного способа определения адгезии пленки является то, что наблюдают за образованием купола в ходе процесса подачи равномерного внутреннего давления, форму основания (контура отрыва) купола принимают как эллиптическую с учетом анизотропных особенностей адгезива и анизотропии материала пленки, проводят измерение текущей высоты подъема купола и текущих размеров большой и малой полуосей основания купола, определяют механическое напряжение отрыва по формуле, по вычисленным значениям механического напряжения отрыва судят об адгезионных свойствах пленки к подложке.

Изобретение относится к процессам обработки металлов давлением и определения адгезионной составляющей силы трения. Способ определения оценки эффективности смазочных материалов с учетом величины силы выталкивания заготовки из полости матрицы заключается в измерении сил выдавливания и выталкивания образца с нанесенным на него эталонным и исследуемым смазочным материалом.

Изобретение относится в способам оценки прочности сцепления металлических покрытий с основой из металлов и сплавов и может быть использовано в различных отраслях машиностроения, где применяются газотермический и газодинамический методы нанесения покрытий для придания поверхности повышенных физико-механических характеристик.

Изобретение относится к конструкции прибора, предназначенного для количественного определения липкости препрега, представляющего собой композиционный материал, полученный путем пропитки армирующей волокнистой основы равномерно распределенными полимерными связующими.

Изобретение относится к испытательной технике и может быть использовано для определения прочности сцепления клееполимерных дисперсно наполненных самотвердеющих композиционных материалов различного строения и состава с металлической подложкой. Адгезионная прочность, характеризуемая напряжением сдвига, определяется путем продавливания пуансоном сформированного во внутренней полости матрицы опытного дисперсного композита. При этом отверстие в матрице изготавливается ступенчатым, а сама матрица имеет такие геометрические параметры, которые обеспечивают условия жесткости при нагружении. Технический результат – обеспечение простоты подготовки и исполнения и учет всей совокупности факторов, определяющих уровень адгезионной прочности, что обеспечивает высокую достоверность результатов испытаний. 2 з.п. ф-лы, 2 ил.
Наверх