Дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему введены первый (14), второй (15), третий (16) и четвертый (17) дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого (14) и второго (15) дополнительных выходных транзисторов соединены с базой первого (10) выходного транзистора, базы третьего (16) и четвертого (17) дополнительных выходных транзисторов соединены с базой второго (12) выходного транзистора, коллекторы первого (14) и третьего (16) дополнительных выходных транзисторов соединены с первым (5) токовым выходом входного дифференциального каскада (1), коллекторы второго (15) и четвертого (17) дополнительных выходных транзисторов соединены со вторым (8) токовым выходом входного дифференциального каскада (1), причем в качестве первого (7) и второго (9) согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением. 2. з.п. ф-лы, 13 ил.

 

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов.

В современной радиоэлектронной аппаратуре находят применение дифференциальные операционные усилители (ОУ), выполненные на базе входного дифференциального каскада (ДК) с активной нагрузкой в виде классических токовых зеркал [1-7]. ОУ с такой архитектурой широко применяются в составе микросхем, выпускаемыми как отечественными так и зарубежными фирмами (СА 3078, LM13600, LM13700 и NF5517) [8-11]. В них токовые зеркала обеспечивают высокую стабильность статического режима выходных транзисторов промежуточного каскада (ПК) ОУ и преобразуют изменения выходных токов входного ДК в соответствующие приращения выходного тока ПК. Однако в ОУ с данной архитектурой коэффициент усиления по напряжению получается небольшим. Это связано с тем, что входное сопротивление классических токовых зеркал, на котором выделяются выходные напряжения входного ДК, не велико (десятки Ом).

Ближайшим прототипом заявляемого устройства является операционный усилитель по патенту US 5.132.640, fig. 2. Кроме этого данная архитектура ОУ приведена в других патентах [1-7].

ОУ-прототип содержит (фиг. 1) входной дифференциальный каскад 1 с первым 2 и вторым 3 основными входами, согласованный с первой 4 шиной источника питания, первый 5 токовый выход входного дифференциального каскада 1, связанный со второй 6 шиной источника питания через первый 7 согласующий двухполюсник, второй 8 токовый выход входного, дифференциального каскада 1, связанный со второй 6 шиной источника питания через второй 9 согласующий двухполюсник, первый 10 выходной транзистор, база которого соединена с первым 5 токовым выходом входного дифференциального каскада 1, эмиттер подключен ко второй 6 шине источника питания, а коллектор связан со входом токового зеркала 11, согласованного с первой 4 шиной источника питания, второй 12 выходной транзистор, эмиттер которого подключен ко второй 6 шине источника питания, база соединена со вторым 8 токовым выходом входного, дифференциального каскада 1, а коллектор связан с токовым выходом токового зеркала 11 и соединен с токовым выходом устройства 13.

Существенный недостаток известного ОУ состоит в том, что при выполнении условий обеспечения высокой стабильности статического режима транзисторов его промежуточного каскада в нем невозможно получить повышенный коэффициент усиления по напряжению.

Основная задача предлагаемого изобретения состоит в повышении в 80-100 раз коэффициента усиления (Ку) разомкнутого ОУ при сохранении высокой температурной и радиационной стабильности статического режиме транзисторов его промежуточного каскада.

Поставленная задача достигается тем, что в дифференциальном операционном усилителе фиг. 1, содержащем входной дифференциальный каскад 1 с первым 2 и вторым 3 основными входами, согласованный с первой 4 шиной источника питания, первый 5 токовый выход входного дифференциального каскада 1, связанный со второй 6 шиной источника питания через первый 7 согласующий двухполюсник, второй 8 токовый выход входного дифференциального каскада 1, связанный со второй 6 шиной источника питания через второй 9 согласующий двухполюсник, первый 10 выходной транзистор, база которого соединена с первым 5 токовым выходом входного дифференциального каскада 1, эмиттер подключен ко второй 6 шине источника питания, а коллектор связан со входом токового зеркала 11, согласованного с первой 4 шиной источника питания, второй 12 выходной транзистор, эмиттер которого подключен ко второй 6 шине источника питания, база соединена со вторым 8 токовым выходом входного дифференциального каскада 1, а коллектор связан с токовым выходом токового зеркала 11 и соединен с токовым выходом устройства 13, предусмотрены новые элементы и связи - в схему введены первый 14, второй 15, третий 16 и четвертый 17 дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого 14 и второго 15 дополнительных выходных транзисторов соединены с базой первого 10 выходного транзистора, базы третьего 16 и четвертого 17 дополнительных выходных транзисторов соединены с базой второго 12 выходного транзистора, коллекторы первого 14 и третьего 16 дополнительных выходных транзисторов соединены с первым 5 токовым выходом входного дифференциального каскада 1, коллекторы второго 15 и четвертого 17 дополнительных выходных транзисторов соединены со вторым 8 токовым выходом входного дифференциального каскада 1, причем в качестве первого 7 и второго 9 согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением.

На фиг. 1 показана схема ОУ-прототипа, а на фиг. 2 - схема заявляемого устройства в соответствии с п. 1 формулы изобретения.

На фиг. 3 приведена схема заявляемого ОУ фиг. 2, на которой показаны приращения токов и напряжений, позволяющие количественно оценить эффект повышения его коэффициента усиления по напряжению.

На фиг. 4 представлена схема заявляемого устройства в соответствии с п. 2 формулы изобретения.

На фиг. 5 представлена схема заявляемого устройства в соответствии с п. 3 формулы изобретения.

На фиг. 6 приведена схема ОУ-прототипа фиг. 1 в среде PSpice на моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г. Минск). В данной схеме используется такой же входной каскад, что и в ОУ фиг. 5. Это позволяет сравнить характеристики известного (фиг. 1) и заявляемого (фиг. 5) ОУ в одинаковых условиях (при идентичных входных каскадах 1).

На фиг. 7 показана амплитудно-частотная характеристика дифференциального операционного усилителя-прототипа (фиг. 6) без отрицательной обратной связи (ООС).

На фиг. 8 показана амплитудно-частотная характеристика дифференциального операционного усилителя-прототипа (фиг. 6) со 100% отрицательной обратной связью.

На фиг. 9 приведена схема заявляемого устройства фиг. 5 в режиме инвертирующего усилителя с коэффициентом передачи Ку=-1 в среде PSpice на моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г. Минск), которая использовалась для моделирования его амплитудно-частотных характеристик.

На фиг. 10 показана амплитудно-частотная характеристика дифференциального операционного усилителя фиг. 9 без отрицательной обратной связи.

На фиг. 11 показана амплитудно-частотная характеристика дифференциального операционного усилителя фиг. 9 со 100% отрицательной обратной связью. Из анализа фазовых соотношений в схеме фиг. 9 следует, что коэффициент усиления по напряжению ОУ фиг. 9 равен минус единице, что в принципе не реализуется на основе схемы ОУ-прототипа с типовыми входными каскадами.

На фиг. 12 приведены временные характеристики входного и выходного синусоидального напряжения схемы фиг. 9, которые показывают, что выходное напряжение заявляемого устройства в данной схеме включено противофазно его входному напряжению.

На фиг. 13 приведена зависимость напряжения смещения нуля ОУ фиг. 9 от потока нейтронов (а) и температуры в диапазоне минус 60-80°C (б). Данные характеристики получены для случая, когда элементы схемы обладают высокой идентичностью, т.е. данные графики показывают предельные возможности заявляемого ОУ.

Дифференциальный операционный усилитель фиг. 2 содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 основными входами, согласованный с первой 4 шиной источника питания, первый 5 токовый выход входного дифференциального каскада 1, связанный со второй 6 шиной источника питания через первый 7 согласующий двухполюсник, второй 8 токовый выход входного дифференциального каскада 1, связанный со второй 6 шиной источника питания через второй 9 согласующий двухполюсник, первый 10 выходной транзистор, база которого соединена с первым 5 токовым выходом входного дифференциального каскада 1, эмиттер подключен ко второй 6 шине источника питания, а коллектор связан со входом токового зеркала 11, согласованного с первой 4 шиной источника питания, второй 12 выходной транзистор, эмиттер которого подключен ко второй 6 шине источника питания, база соединена со вторым 8 токовым выходом входного дифференциального каскада 1, а коллектор связан с токовым выходом токового зеркала 11 и соединен с токовым выходом устройства 13. В схему введены первый 14, второй 15, третий 16 и четвертый 17 дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого 14 и второго 15 дополнительных выходных транзисторов соединены с базой первого 10 выходного транзистора, базы третьего 16 и четвертого 17 дополнительных выходных транзисторов соединены с базой второго 12 выходного транзистора, коллекторы первого 14 и третьего 16 дополнительных выходных транзисторов соединены с первым 5 токовым выходом входного дифференциального каскада 1, коллекторы второго 15 и четвертого 17 дополнительных выходных транзисторов соединены со вторым 8 токовым выходом входного дифференциального каскада 1, причем в качестве первого 7 и второго 9 согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением на переменном токе, например классические источники опорного тока, высокоомные резисторы, индуктивности и т.п.

Для уменьшения влияния напряжения Эрли первого 10 и второго 12 выходных транзисторов на напряжение смещения нуля ОУ фиг. 2 предусмотрена цепь смещения 18, которая может быть выполнена в виде стабилитрона, резистора или нескольких прямосмещенных р-n переходов.

На фиг. 2 эквивалентное входное сопротивление токового выхода 13 моделируется резистором нагрузки 19. При этом входной дифференциальный каскад 1 выполнен (в частном случае) на полевых транзисторах 20 и 21 и источнике опорного тока 22.

В схеме фиг. 3 предусмотрен буферный усилитель 23, который обеспечивает потенциальный выход устройства 24 и его низкое выходное сопротивление.

На фиг. 4, в соответствии с п. 2 формулы изобретения, введен дополнительный входной дифференциальный каскад 25, согласованный с первой 4 шиной источника питания, имеющий первый 26 и второй 27 дополнительные входы, причем первый 28 токовый выход дополнительного входного дифференциального каскада 25 связан с первым 5 токовым выходом входного дифференциального каскада 1, а второй 29 токовый выход дополнительного входного дифференциального каскада 25 связан со вторым 8 токовым выходом входного дифференциального каскада 1.

На фиг. 5, в соответствии с п. 3 формулы изобретения, входной дифференциальный каскад 1 выполнен на основе первого 30 и второго 31 биполярных транзисторов, а также первого 32 и второго 33 полевых транзисторов с управляющим р-n переходом, причем коллекторы первого 30 и второго 31 биполярных транзисторов связаны с первой 4 шиной источника питания, база первого 30 биполярного транзистора соединена с первым 2 основным входом входного дифференциального каскада 1, база второго 31 биполярного транзистора соединена со вторым 3 основным входом входного дифференциального каскада 1, эмиттер первого 30 биполярного транзистора соединен с истоком первого 32 полевого транзистора с управляющим p-n переходом, эмиттер второго 31 биполярного транзистора соединен с истоком второго 33 полевого транзистора с управляющим р-n переходом, сток первого 32 полевого транзистора с управляющим р-n переходом связан с первым 5 токовым выходом входного дифференциального каскада 1, сток второго 33 полевого транзистора с управляющим р-n переходом соединен со вторым 8 токовым выходом входного дифференциального каскада 1, затвор первого 32 полевого транзистора с управляющим р-n переходом связан с первым 34 дополнительным входом входного дифференциального каскада 1, затвор второго 33 полевого транзистора с управляющим р-n переходом связан со вторым 35 дополнительным входом входного дифференциального каскада 1.

Сравним работу ОУ фиг. 1 и фиг. 3.

Статический режим по току транзисторов ОУ фиг. 3 определяется следующими уравнениями Кирхгофа:

где Iк14=Iк16=Iк17=Iк15=Iк10=Iк12 - коллекторные токи соответствующих транзисторов (14, 16, 17, 15, 10, 12);

I7=I9 - токи первого 7 и второго 9 согласующих двухполюсников с высоким внутренним сопротивлением;

I5=I8 - токи первого 5 и второго 8 выходов входного дифференциального каскада 1.

Если выбрать I7=I9=I0, то при I5=I8=3I0 коллекторные токи всех транзисторов схемы будет равны некоторому опорному току I0, например I0=1 мА. При других значениях I5=I8 статические коллекторные токи определяются уравнениями (1) и (2).

Таким образом, в заявляемой схеме, так же как и в ОУ-прототипе, обеспечивается высокая стабильность статического режима транзисторов промежуточного каскада, которая определяется опорным током I0.

Рассмотрим далее динамические параметры сравниваемых ОУ.

Коэффициент усиления по напряжению ОУ-прототипа фиг. 1 при усилении по току токового зеркала 11, равном единице (Ki=1), определяется формулой

где - коэффициент усиления входного напряжения u2.3 (между входами 2 и 3) входного дифференциального каскада 1;

- коэффициент усиления по напряжению промежуточного каскада ОУ;

u13 - напряжение в цепи токового выхода 13;

rэ7 - дифференциальное сопротивление первого 7 согласующего двухполюсника;

rэ10 - дифференциальное сопротивление эмиттерного перехода первого 10 выходного транзистора;

SДК - крутизна преобразования входного напряжения ОУ (u2.3) в выходной ток токовых выходов 5 и 8;

Rн=R19 - эквивалентное сопротивление нагрузки в цепи токового выхода 13.

Таким образом, в ОУ-прототипе фиг. 1:

где rэ7≈rэ10.

Следует заметить, что в схеме фиг. 1 увеличение rэ7 за счет применения источников опорного тока в качестве согласующего двухполюсника 7 (9) приведет к резкому повышению нестабильности коллекторных токов транзистора 10 (12), нарушит работоспособность схемы.

В заявляемом ОУ фиг. 3 эквивалентная проводимость в цепи токового выхода 5 определяется суммой из нескольких составляющих:

где усм - проводимость участка цепи между токовым выходом 5 и коллекторами транзисторов 14 и 16;

y7 - проводимость первого 7 согласующего двухполюсника;

yвx.i - входные проводимости транзисторов 14, 15, 10 по цепи базы.

Причем

βi - коэффициент усиления по току базы i-го транзистора.

В формуле (5) - проводимость участка цепи между токовым выходом 5 и коллекторами транзисторов 14 и 16, причем

где ,

rэi - сопротивление эмиттерного перехода i-го транзистора.

Таким образом, при высокой симметрии схемы, когда u5=u8, можно найти, что

где , .

Поэтому при y7≈0 коэффициент усиления по напряжению предлагаемого ОУ

где β=β141510>>1.

Сравнение формул (4) и (9) показывает, что предлагаемый ОУ имеет в N-раз более высокий коэффициент усиления по напряжению, где

Данный теоретический вывод подтверждается результатами компьютерного моделирования (фиг. 7, фиг. 10), из которых следует, что предлагаемая схема ОУ имеет в 100 раз более высокое усиление по напряжению без введения дополнительных каскадов.

При 100% отрицательной обратной связи схема фиг. 9 является инвертирующим повторителем входного напряжения с Kу≈-1 (фиг. 12). Следует заметить, что на базе известного ОУ-прототипа такой режим (без резисторов отрицательной обратной связи) не реализуется.

Предлагаемые схемотехнические решения имеют малые значения систематической составляющей напряжения смещения нуля при температурных и радиационных воздействиях (фиг. 13), что свидетельствует о высокой стабильности статического режима транзисторов.

Таким образом, предлагаемое устройство имеет существенные преимущества в сравнении с известными и может найти широкое применение в системах обработки радиотехнических сигналов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 5.371.476, fig. 1

2. Патент US 4.348.602, fig. 2

3. Патент US 6.657.465

4. Патент US 7.786.799, fig. 3

5. Патент Японии JP 61-140210, fig. 1

6. Патент US 7.411.451, fig. 2

7. Патент US 4.607.232

8. Справочник: операционные усилители и компараторы (Авербух В.Д. и др.). - М.: Изд-во «Додэка-ХХI», 2001, С. 106 (микросхема СА3078).

9. Микросхема LM13600

http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Linear/LM13600.pdf

10. Микросхема LM13700 http://pdfl.alldatasheet.com/datasheet-pdf/view/549473/TI1/LM13700MX.html

11. Микросхема NF5517 http://pdfl.alldatasheet.com/datasheet-pdf/view/175236/ONSEMI/NE5517.html

1. Дифференциальный операционный усилитель, содержащий входной дифференциальный каскад (1) с первым (2) и вторым (3) основными входами, согласованный с первой (4) шиной источника питания, первый (5) токовый выход входного дифференциального каскада (1), связанный со второй (6) шиной источника питания через первый (7) согласующий двухполюсник, второй (8) токовый выход входного дифференциального каскада (1), связанный со второй (6) шиной источника питания через второй (9) согласующий двухполюсник, первый (10) выходной транзистор, база которого соединена с первым (5) токовым выходом входного дифференциального каскада (1), эмиттер подключен ко второй (6) шине источника питания, а коллектор связан с входом токового зеркала (11), согласованного с первой (4) шиной источника питания, второй (12) выходной транзистор, эмиттер которого подключен ко второй (6) шине источника питания, база соединена со вторым (8) токовым выходом входного дифференциального каскада (1), а коллектор связан с токовым выходом токового зеркала (11) и соединен с токовым выходом устройства (13), отличающийся тем, что в схему введены первый (14), второй (15), третий (16) и четвертый (17) дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого (14) и второго (15) дополнительных выходных транзисторов соединены с базой первого (10) выходного транзистора, базы третьего (16) и четвертого (17) дополнительных выходных транзисторов соединены с базой второго (12) выходного транзистора, коллекторы первого (14) и третьего (16) дополнительных выходных транзисторов соединены с первым (5) токовым выходом входного дифференциального каскада (1), коллекторы второго (15) и четвертого (17) дополнительных выходных транзисторов соединены со вторым (8) токовым выходом входного дифференциального каскада (1), причем в качестве первого (7) и второго (9) согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением.

2. Дифференциальный операционный усилитель по п. 1, отличающийся тем, что в схему введен дополнительный входной дифференциальный каскад (25), согласованный с первой (4) шиной источника питания, имеющий первый (26) и второй (27) дополнительные входы, причем первый (28) токовый выход дополнительного входного дифференциального каскада (25) связан с первым (5) токовым выходом входного дифференциального каскада (1), а второй (29) токовый выход дополнительного входного дифференциального каскада (25) связан со вторым (8) токовым выходом входного дифференциального каскада (1).

3. Дифференциальный операционный усилитель по п. 1, отличающийся тем, что входной дифференциальный каскад (1) выполнен на основе первого (30) и второго (31) биполярных транзисторов, а также первого (32) и второго (33) полевых транзисторов с управляющим p-n переходом, причем коллекторы первого (30) и второго (31) биполярных транзисторов связаны с первой (4) шиной источника питания, база первого (30) биполярного транзистора соединена с первым (2) основным входом входного дифференциального каскада (1), база второго (31) биполярного транзистора соединена со вторым (3) основным входом входного дифференциального каскада (1), эмиттер первого (30) биполярного транзистора соединен с истоком первого (32) полевого транзистора с управляющим p-n переходом, эмиттер второго (31) биполярного транзистора соединен с истоком второго (33) полевого транзистора с управляющим p-n переходом, сток первого (32) полевого транзистора с управляющим p-n переходом связан с первым (5) токовым выходом входного дифференциального каскада (1), сток второго (33) полевого транзистора с управляющим p-n переходом соединен со вторым (8) токовым выходом входного дифференциального каскада (1), затвор первого (32) полевого транзистора с управляющим p-n переходом связан с первым (34) дополнительным входом входного дифференциального каскада (1), затвор второго (33) полевого транзистора с управляющим p-n переходом связан со вторым (35) дополнительным входом входного дифференциального каскада (1).



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ.

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля.

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей.

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники, а именно к прецизионным устройствам усиления сигналов. Технический результат - повышение коэффициента усиления дифференциального сигнала в разомкнутом состоянии ОУ до уровня 90÷100 дБ.

Изобретение относится к области радиоэлектроники, в частности усиления сигналов. Технический результат - уменьшение статического тока, потребляемого ОУ при отключенной нагрузке.

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала. Для этого предложен дифференциальный операционный усилитель для работы при низких температурах, который содержит первый (1) входной полевой транзистор, первый (2) вход устройства, первый (3) вспомогательный транзистор, первый (4) токостабилизирующий двухполюсник, первую (5) шину источника питания, второй (6) входной полевой транзистор, второй (7) вход устройства, второй (8) вспомогательный транзистор, второй (9) токостабилизирующий двухполюсник, первый (10) выход устройства, вторую (11) шину источника питания, первый (12) резистор отрицательной обратной связи, первый (13) выходной транзистор, второй (14) выходной транзистор, первую (15) цепь смещения потенциалов, первый (16) дополнительный транзистор, второй (17) дополнительный транзистор, вторую (18) цепь смещения потенциалов, первый (19) и второй (20) входы выходного дифференциального каскада (21). 3 з.п. ф-лы, 9 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля, повышение стабильности при низких температурах и воздействии радиации. Мультидифференциальный операционный усилитель содержит первый входной биполярный транзистор, первый входной полевой транзистор с управляющим р-n переходом, первое токовое зеркало, источник питания, второй входной биполярный транзистор, второй входной полевой транзистор с управляющим р-n переходом, второе токовое зеркало, первое дополнительное токовое зеркало, второе дополнительное токовое зеркало. 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: повышение коэффициента усиления по напряжению (Ку) при сохранении высокой температурной и радиационной стабильности напряжения смещения нуля. Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления содержит входной дифференциальный каскад, первый выходной транзистор, коллектор которого связан со входом токового зеркала, источник питания, второй выходной транзистор, первый вспомогательный транзистор, второй вспомогательный транзистор, третий вспомогательный транзистор, первый дополнительный повторитель напряжения, четвертый вспомогательный транзистор и второй дополнительный повторитель напряжения. 11 ил.

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный ему неинвертирующий выход (2) устройства, инвертирующий вход (3) устройства и синфазный ему инвертирующий выход (4) устройства, первый (5) входной дифференциальный каскад, второй (8) входной дифференциальный каскад, выходной дифференциальный каскад (14), при этом в схему введен дополнительный дифференциальный каскад (20), неинвертирующий вход (21) которого соединен с неинвертирующим (1) входом устройства, инвертирующий вход (22) дополнительного дифференциального каскада (20) подключен к инвертирующему (3) входу устройства, первый (23) токовый выход дополнительного дифференциального каскада (20) связан с первым (12) токовым выходом второго (8) входного дифференциального каскада, а второй (24) токовый выход дополнительного дифференциального каскада (20) связан со вторым (16) токовым выходом второго (8) входного дифференциального каскада. 5 ил.

Изобретение относится к области радиоэлектроники и вычислительной техники. Технический результат заключается в обеспечении дополнительно к режиму последовательного во времени преобразования входных потенциальных сигналов в выходное напряжение, алгебраического суммирования входных дифференциальных и недифференциальных напряжений, а также изменения их фазы в процессе мультиплексирования. Мультиплексор содержит N входных дифференциальных каскадов, имеющих инвертирующий и неинвертирующий входы, логический потенциальный вход для включения/выключения дифференциального каскада, и токовый выход, связанный с входом выходного буферного усилителя. Причем каждый из N входных дифференциальных каскадов имеет диапазон линейной работы по дифференциальному входу, превышающий максимальную амплитуду его входного дифференциального напряжения, потенциальный выход выходного буферного усилителя соединен с инвертирующим входом первого входного дифференциального каскада, неинвертирующий вход которого связан с общей шиной источника питания, причем каждый логический потенциальный вход включения/выключения каждого входного дифференциального каскада связан с выходом соответствующих из N триггеров, входы управления состоянием которых соединены с выходами цифрового управляющего устройства. 17 ил.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала при работе в диапазоне низких температур. Указанный результат достигается посредством инструментального усилителя для работы при низких температурах, который содержит первый входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым входом устройства, исток подключен к стоку первого вспомогательного транзистора первого дифференциального каскада, а сток через первый двухполюсник нагрузки связан с первой шиной источника питания и соединен с первым выходом, второй входной полевой транзистор первого дифференциального каскада. Между второй шиной источника питания и истоком второго выходного транзистора включен второй токостабилизирующий двухполюсник, причем второй и первый выходы соединены с соответствующими входами выходного каскада, выход которого, являющийся потенциальным выходом устройства, связан с четвертым входом устройства через цепь общей отрицательной обратной, а третий вход устройства соединен с общей шиной источников питания. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления электрических сигналов различных датчиков. Технический результат заключается в повышении точности за счет уменьшения систематической составляющей напряжения смещения нуля низкотемпературного радиационно-стойкого мультидифференциального операционного усилителя (МОУ). Он содержит дифференциальные каскады на основе транзисторов, связанных друг с другом. Токовый выход первого (1) дифференциального каскада соединен с первой (15) шиной источника питания через первый (18) токостабилизирующий двухполюсник и подключен к эмиттеру первого (19) согласующего транзистора, второй (12) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (20) согласующего транзистора и через второй (21) токостабилизирующий двухполюсник соединен с первой (15) шиной источника питания. Причем первый (11) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (26) выходного транзистора и подключен к коллектору первого (19) согласующего транзистора, коллектор второго (26) выходного транзистора связан со вторым (28) входом выходного дифференциального каскада (25), выход которого соединен с выходом устройства (17). 3 з.п. ф-лы, 15 ил.

Изобретение относится к области аналоговой микроэлектроники. Технический результат: повышение быстродействия ОУ в режиме большого сигнала до уровня 20000 В/мкс. Это обеспечивается за счет исключения динамической перегрузки промежуточного каскада ОУ, выполненного в виде комплементарных «перегнутых» каскодов. Таким образом, предложен многоканальный быстродействующий операционный усилитель, который содержит входной дифференциальный каскад с первым и вторым входами и четырьмя токовыми выходами, первый-четвертый выходные транзисторы, буферный усилитель и корректирующий конденсатор, два токовых зеркала, причем в качестве входного дифференциального каскада используются каскады с широким диапазоном активной работы, а каждый первый, второй, третий и четвертый токостабилизирующие двухполюсники выполнены в виде соответствующих резисторов. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: уменьшение систематической составляющей напряжения смещения нуля, а также создание условий для применения в схеме заявляемого устройства КМОП транзисторов. Низкотемпературный радиационно-стойкий мультидифференциальный операционный усилитель содержит первый (1) дифференциальный каскад на основе первого (2) и второго (3) входных транзисторов, связанных друг с другом инжектирующими выводами. Первый (4) токовый выход первого (1) дифференциального каскада и первый (11) токовый выход второго (8) дифференциального каскада подключены ко входу первого (15) токового зеркала, второй (12) токовый выход второго (8) дифференциального каскада подключен к выходу второго (18) токового зеркала и соединен со входом дополнительного инвертирующего усилителя (20), согласованного со второй (19) шиной источника питания, токовый выход которого соединен с токовым выходом устройства (17). 8 з.п. ф-лы, 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в уменьшении систематической составляющей напряжения смещения нуля. Радиационно-стойкий мультидифференциальный операционный усилитель для работы при низких температурах содержит первый и второй входные биполярные транзисторы, первый и второй входные полевые транзисторы, первое и второе токовые зеркала, первую и вторую шины источника питания, при этом в схему введены первый и второй дополнительные полевые транзисторы. 3 з.п. ф-лы, 16 ил.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему введены первый, второй, третий и четвертый дополнительные выходные транзисторы, эмиттеры которых подключены ко второй 6 шине источника питания, базы первого и второго дополнительных выходных транзисторов соединены с базой первого выходного транзистора, базы третьего и четвертого дополнительных выходных транзисторов соединены с базой второго выходного транзистора, коллекторы первого и третьего дополнительных выходных транзисторов соединены с первым токовым выходом входного дифференциального каскада, коллекторы второго и четвертого дополнительных выходных транзисторов соединены со вторым токовым выходом входного дифференциального каскада, причем в качестве первого и второго согласующих двухполюсников используются токостабилизирующие двухполюсники с высоким внутренним сопротивлением. 2. з.п. ф-лы, 13 ил.

Наверх