Способ изготовления модельного образца для определения деформаций


G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2616671:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинский государственный педагогический университет" (ФГБОУ ВПО "ЧГПУ") (RU)

Изобретение относится к прокатному и кузнечно-прессовому производству при исследовании напряженно-деформированного состояния металла в различных процессах пластического формоизменения. На поверхности пластин одинаковых размеров из модельного материала выполняют риски треугольного профиля и собирают пластины в пакет. Перед выполнением рисок измеряют пористость заготовок для прокатного и кузнечно-прессового производства. Глубину рисок выполняют, увеличивая ее в направлении от периферийных зон к центру пропорционально этой пористости. Обеспечивается повышение точности измерений, снижение брака изделий при пластическом формоизменении заготовок. 2 ил.

 

Изобретение относится к области измерительной техники, а именно к изготовлению образцов для определения деформаций, и может быть использовано для исследования напряженно-деформированного состояния металла в различных процессах пластического формоизменения, таких как прокатное и кузнечно-прессовое производство изделий и заготовок.

Известен способ изготовления модельного образца для определения деформаций в виде листовой заготовки толщиной от 0,6 до 1,8 мм из алюминиевого сплава с системой отверстий с острыми кромками (авторское свидетельство СССР №1575093, Способ получения координатной сетки на детали, МПК G01N 1/28, от 30.06.90). Отверстия наносят прижатием трафарета, выполненного из материала с более высокими прочностными свойствами, чем исследуемый материал. Диаметр отверстия от 2,5 до 10 мм. Отверстия на образце выполняют преимущественно круглой формы и располагают их в шахматном порядке.

Недостатком данного способа являются локальные погрешности, вносимые в материал образца при изготовлении его прижатием трафарета с острыми отбортованными кромками. Эти погрешности в дальнейшем снижают точность определения исследуемых деформаций материалов в процессе их пластического формоизменения.

Наиболее близким по технической сущности и достигаемому эффекту предлагаемому является способ изготовления образца для исследования деформаций, в котором на пластинах одинаковых геометрических размеров выполняют риски с треугольным поперечным сечением и затем пластины соединяют между собой сплавом Вуда (П.И. Полухин, В.К. Воронцов, А.Б. Кудрин, Н.А. Чиченев, М.: «Металлургия», 1974, с. 202-206). Пластины выполнены из свинцово-сурьмянистого сплава. Все риски выполняют одинакового размера и располагают их на равном расстоянии друг от друга.

Следует отметить, что у заготовок прокатного и кузнечно-прессового производства наблюдаются ликвационные явления (химическая и структурная неоднородность), неравномерность плотности (пористости) их материала, осевая рыхлость. Указанный ранее способ не учитывает эти явления, что снижает точность исследования напряженно-деформированного состояния металлов в различных процессах пластического формоизменения.

Таким образом, основным недостатком наиболее близкого аналога является недостаточная адекватность моделирования реального процесса пластического формоизменения материала заготовок прокатного и кузнечно-прессового производства и, как следствие, низкая точность измерений.

Задачей предлагаемого решения является повышение точности измерений.

Поставленная задача решается тем, что в способе изготовления модельного образца, в котором на поверхности пластин одинаковых размеров из модельного материала выполняют риски треугольного профиля и собирают пластины в пакет, согласно предлагаемому решению перед выполнением рисок измеряют пористость заготовок для прокатного и кузнечно-прессового производства и глубину рисок выполняют, увеличивая ее в направлении от периферийных зон к центру пропорционально этой пористости.

То, что глубину рисок на поверхности собираемых в пакет пластин модельного образца выполняют пропорционально пористости реальных заготовок, позволит повысить адекватность моделирования реального процесса пластического формоизменения материала заготовок прокатного и кузнечно-прессового производства, то есть в большей степени приблизиться к действительной картине распределения деформаций, а следовательно, увеличить точность их измерений. Отмеченное обеспечит возможность получения более достоверной экспериментальной информации для создания математических моделей, позволяющих с большей вероятностью оптимизировать технологические процессы прокатного и кузнечно-прессового производства на стадии их проектирования и экспресс-корректировки при непосредственной реализации.

Предлагаемый способ изготовления модельного образца проиллюстрирован на фиг. 1, 2, где на фиг. 1 показан общий вид модельного образца, состоящего из собранных в пакет пластин, на фиг. 2 изображен вид с торца на отдельную пластину модельного образца, выполненную согласно предлагаемому решению для определения деформации кузнечного слитка.

Способ изготовления модельного образца осуществляется следующим образом.

Из поперечных темплетов, отобранных у заготовок (слитков и непрерывнолитых заготовок) прокатного и кузнечно-прессового производства, изготавливают образцы для определения пористости их материала. По результатам гидростатического испытания таких образцов устанавливают зависимости изменения пористости материала заготовок по их сечению. На поверхности пластин одинаковых размеров из модельного материала калиброванным резцом выполняют риски треугольного профиля с увеличением их глубины в направлении от периферийных зон к центру модельного образца пропорционально установленным зависимостям изменения пористости материала заготовок.

Затем пластины собирают в пакет, соединяя их сплавом Вуда.

Предлагаемый способ изготовления модельного образца опробован при использовании пластин из свинцово-сурьмянистого сплава одинаковых геометрических размеров: толщиной 7 мм, шириной 56 мм и длиной 200 мм. На поверхности пластин резцом с шагом, равным 7 мм, были выполнены продольные риски. Глубина рисок варьировалась в интервале от 1,00 мм до 2,96 мм в направлении от периферийных зон к центру модельного образца пропорционально установленным параболическим зависимостям изменения пористости материала кузнечных слитков массой 8 т из стали 45. Для отобранного на расстоянии ¼ высоты тела кузнечного слитка массой 8 т из стали 45 от его подприбыльной части поперечного темплета была установлена следующая зависимость изменения глубины рисок в направлении от периферийных зон к центру модельного образца:

hi=h0+(0,005÷0,007)⋅(bi-0,5b0),

где hi - глубина рисок в i-й зоне в направлении от периферийных зон к центру модельного образца, h0 - глубина рисок в периферийной зоне модельного образца, bi - расстояние от центра образца по направлению к периферийной зоне для i-й риски на поверхности модельного образца, b0 - ширина модельного образца.

Выполнение рисок с увеличением их глубины в направлении от периферийных зон к центру модельного образца пропорционально зависимостям, предварительно установленным по результатам измерения пористости материала заготовок прокатного и/или кузнечно-прессового производства, даст возможность более адекватного и точного моделирования процессов пластического формоизменения.

Результаты ультразвукового контроля при испытании поковок валов диаметром 320-380 мм из слитков массой 8 т стали 45, изготовленных по технологическим режимам, составленным с учетом моделировании неоднородностей плотности по поперечному сечению крупнотоннажных кузнечных слитков, свидетельствуют о снижении их брака по внутренним несплошностям, квалифицируемым уровнем С/с на 10,7% и уровнем В/b на 15,9%.

Предлагаемый способ найдет применение при обработке металлов давлением для измерения деформаций заготовок в процессе пластического формообразования в прокатном и кузнечно-прессовом производстве.

Способ изготовления модельного образца для определения деформаций, в котором на поверхности пластин одинаковых размеров из модельного материала выполняют риски треугольного профиля и собирают пластины в пакет, отличающийся тем, что перед выполнением рисок измеряют пористость заготовок для прокатного и кузнечно-прессового производства и глубину рисок выполняют, увеличивая ее в направлении от периферийных зон к центру пропорционально этой пористости.



 

Похожие патенты:

Изобретение относится к листовой штамповке, в частности к исследованию механических свойств листовых материалов для оценки их штампуемости, а также для использования в CAD/CAE-системах при компьютерном моделировании и проектировании формоизменяющих операций листовой штамповки.

Изобретение относится к листовой штамповке, а в частности к исследованию механических свойств листовых материалов для оценки их штампуемости, а также для использования в CAD/CAE-системах при компьютерном моделировании и проектировании формоизменяющих операций листовой штамповки.

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации.

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации.

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях одноосного растяжения в машиностроении, автомобилестроении, авиастроении и других отраслях промышленности.

Изобретение относится к области материаловедения, в частности к способам определения в образцах после однократного ударного нагружения зон пластического деформирования под изломом, и может быть использовано для оценки изменения свойств в сталях вблизи развивающейся трещины, поэтапно или после разрушения образца, контроля причин разрушения изделия и при диагностике в технической экспертизе.

Изобретение относится к методам тепло-прочностных испытаний конструкционных материалов преимущественно при прогнозировании и оценке работоспособности необлучаемых конструктивных элементов в атомной технике.

Изобретение относится к обработке металлов давлением и может быть использовано, в частности, при изготовлении поковок коленчатых валов горячей объемной штамповкой.

Изобретение относится к способу прогнозирования трещинообразования для выделения участка опасности трещинообразования при осуществлении анализа деформации методом конечных элементов, устройству обработки и носителю записи.

Изобретение относится к области радиохимии и может быть использовано при подготовке разведенных порций высокоактивных растворов в условиях каньонов, тяжелых боксов или защитных камер в целях анализа состава этих растворов.

Изобретение относится к области медицины, ветеринарии, сельскому хозяйству и может быть использовано для сбора, хранения и транспортировки биологических материалов.

Изобретение относится к области способов исследования материалов путем получения корней стружек при резании с последующим их изучением. Сущность: осуществляют установку и закрепление образца на столе устройства, задание маятнику начальной энергии путем оснащения грузом некоторой массы и поворота маятника вокруг оси качания в исходное положение, позиционирование образца смещением предметного стола относительно траектории качательного движения маятника.
Изобретение относится к области медицины и биологии, а именно к гистологии, и к гистологической технике и может быть использовано в практике патоморфологических лабораторий лечебных учреждений и морфологических кафедр высших учебных заведений медицинского и биологического профиля.Изобретение решает задачу создания ускоренного способа изготовления гистологических препаратов, которые можно было бы длительное время хранить в условиях лабораторий и многократно использовать для изучения.

Группа изобретений относится к получению водного конденсата из воздуха и способу концентрирования примесей из воздуха, которые могут быть использованы для высокочувствительного определения примесей в воздухе при проведении экологических исследований.

Изобретение относится к области измерительной техники, а именно в химической и нефтехимической отраслях промышленности на любых предприятиях и заводах, где вязкость изготовляемых ими продуктов является основным показателем качества.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может использоваться для автоматического подсчета количества ретикулоцитов на анализаторах мазков крови.

Изобретение относится к запорной арматуре, применяющейся для газообразных сред, и может быть использовано, в частности, в пробоотборных емкостях. Клапан газоплотный содержит основание 1, корпус 2, по меньшей мере четыре уплотнительных кольца 5, 6, 7 и 8 из полимерного упругого материала и шпиндель 3 с золотником 3а.

Группа изобретений относится к технологии прокачки различных сред по трубопроводу и технике отбора проб жидкости из трубопровода и может найти применение в нефтехимической промышленности, где требуется точность определения параметров потока в трубопроводе.

Группа изобретений относится к устройствам для разделения фракций с более низкой и более высокой плотностями пробы текучей среды, а именно к вариантам механического разделителя и к вариантам узла разделения для обеспечения разделения пробы текучей среды на первую и вторую фазы, включающего такой механический разделитель.

Изобретение относится к устройству для размещения объектов, подлежащих медицинскому исследованию посредством продувки. Устройство содержит средство крепления контейнера, узел всасывания со средством выталкивания и всасывания воздуха, узел нагнетания воздуха для создания, средство перемещения фильтра к узлу всасывания и узлу нагнетания воздуха. Контейнер имеет первый фильтр крышки у отверстия и содержит смешанный раствор с исследуемыми объектами. Средство выталкивания и всасывания воздуха соединено с фильтром для обеспечения прохождения раствора и блокирования исследуемых объектов в состоянии, когда отверстие контейнера, содержащего смешанный раствор, соединено с верхним концом фильтра, выталкивая воздух к нижней стороне фильтра для обеспечения всплытия исследуемых объектов в контейнере, и всасывания для размещения исследуемых объектов внутри контейнера на фильтре. Когда предметное стекло расположено на верхнем конце фильтра, на котором размещены исследуемые объекты, узел нагнетания воздуха имеет возможность обеспечивать положительное давление в нижнем конце фильтра и размещение исследуемых объектов, находящихся на фильтре, на предметном стекле. Обеспечивается повышение точности проводимого исследования. 4 з.п. ф-лы, 11 ил.
Наверх