Способ повышения структурированности почвы

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве. Способ включает предварительное нанесение на поверхность почвы структуроформирующей добавки - наносапропеля в количестве 60-100 кг на 1 га посевной площади, вспашку, боронование и культивацию. Изобретение обеспечивает повышение доли частиц, обеспечивающих плодородие почвы, на 15-20%, коэффициента структурности на 30-40% при сохранении или небольшом повышении коэффициента водопрочности. 1 табл., 12 пр.

 

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть реализовано в сельском хозяйстве.

Известен способ повышения структурированности почвы посредством предварительного нанесения на ее поверхность структуроформирующей добавки - оксиэтилированного полиоксиэтиленгликоля, вспашки, боронования и культивации [1]. Недостатком данного известного способа является относительно низкая доля тех частиц почвы, которые вносят решающий вклад в ее плодородие, а именно с размером (0.25-10.0) мм, а также низкий коэффициент структурности. Кроме того, указанный органический препарат может не полностью перерабатываться в почве со временем и накапливаться в ней, создавая при этом нежелательные для выращивания сельскохозяйственных культур последствия.

Известен также способ повышения структурированности почвы посредством предварительного нанесения на ее поверхность структуроформирующей добавки - сапропеля, вспашки, боронования и культивации [2]. Недостатком данного способа, который по совокупности операций и достигаемому при его использовании техническому эффекту является наиболее близким к заявляемому нами объекту и потому выбран нами в качестве прототипа, также является относительно низкая доля тех частиц почвы, которые вносят решающий вклад в ее плодородие, а именно с размером (0.25-10.0) мм, а также сравнительно низкий коэффициент структурности.

Целью данного изобретения является увеличение доли тех частиц почвы, которые вносят решающий вклад в ее плодородие и повышение коэффициента структурности.

Декларируемая цель достигается тем, что в известном способе повышения структурированности почвы посредством предварительного нанесения на ее поверхность структуроформирующей добавки, вспашки, боронования и культивации [2] в качестве структуроформирующей добавки используют наносапропель, который вносят в почву в количестве (60-100) кг на 1 га посевной площади. В результате использования заявляемого нами способа доля частиц, обеспечивающих плодородие почвы, возрастает на 15-20%, коэффициент структурности - на 30-40% по сравнению с таковыми для способа-прототипа [2].

До настоящего времени в литературе не был описан какой-либо способ повышения структурированности почвы, где в качестве структуроформирующей добавки использовался бы наносапропель или какой-либо природный минерал с наноструктурным уровнем организации вещества. Этот факт позволяет нам считать, что заявляемый объект отвечает первому из установленных законодательством РФ критериальных признаков изобретения - новизна. Сопоставление известных признаков способа-прототипа [2] и отличительных признаков, характеризующих заявляемый нами объект (замена используемой в прототипе структуроформирующей добавки - природного сапропеля, содержащего микро- и макрочастицы с размерами порядка 1 мкм и более, на наносапропель, содержащий наночастицы с размерами менее 100 нм), не позволяет предсказать априори появления у него новых по сравнению с прототипом свойств, а именно увеличения доли частиц, обеспечивающих плодородие почвы, и коэффициента структурности (при практически неизменном коэффициенте водопрочности). Этот факт позволяет сделать заключение, что заявляемый объект явным образом не следует из известного в данной отрасли техники уровня и, следовательно, отвечает второму критериальному признаку изобретения - изобретательский уровень. Наконец, используемая в нашем способе структуроформирующая добавка весьма проста по своему составу, приготовление как ее самой, так и используемого в ней наносапропеля легко реализуемо в промышленном масштабе и, следовательно, практическое использование ее также осуществимо без каких бы то ни было проблем; следовательно, заявляемый нами объект отвечает также третьему критериальному признаку изобретения - промышленная применимость.

Использование заявляемого способа иллюстрируется нижеследующими примерами.

Пример 1 (приготовление добавки)

Природный сапропель из донного отложения озера Белое (Тукаевский район Республики Татарстан) измельчают в муку и смешивают с дистиллированной или деионизированной (обессоленной) водой из расчета 20 г сапропеля на 100 мл воды. Полученную смесь обрабатывают ультразвуком в ультразвуковом диспергаторе УЗУ-0,25 мощностью 80 Вт при частоте 18.5 кГц с амплитудой колебаний ультразвукового волновода 5 мкм в течение (5-20) мин при комнатной температуре, в результате чего получается водно-сапропелевая суспензия с размерами частиц сапропеля от 5 до 100 нм. Приготовленную таким образом суспензию наносапропеля далее используют для использования в качестве добавки в почву.

Пример 2

На поверхность почвы наносят указанную в Примере 1 структуроформирующую добавку - наносапропель в виде суспензии из расчета 300 л (т.е. 60 кг наносапропеля) на 1 га посевной площади, после чего традиционным приемом осуществляют ее вспашку, боронование и культивацию. Затем производят определение содержания агрегатов определенного размера методом т.н. «сухого» агрегатного анализа, а водопрочных агрегатов - методом т.н. «мокрого» агрегатного анализа в соответствии с методикой, описанной в [3]. В рамках первого из этих методов из образца приготовленной выше воздушно-сухой почвы отбирают пробу в количестве 1 кг, просеивают ее порциями через колонку сит диаметром 10, 7, 5, 3, 2, 1, 0,5 и 0,25 мм, избегая при этом сильных встряхиваний. В результате этой процедуры почва разделяется на фракции с размером частиц >10, 10-7, 7-5, 5-3, 3-2, 2-1, 1-0,5, 0,5-0,25 и <0,25 мм. Каждую фракцию взвешивают на технохимических весах и рассчитывают ее массовую долю в процентах от массы взятой для анализа навески почвы. В рамках второго метода составляют среднюю навеску весом 50 г из отдельных фракций агрегатов, полученных при сухом просеивании, для чего из каждой фракции на технохимических весах берут навеску в г, численно равную половине процентного содержания данной фракции в почве. При этом фракцию с размером частиц <0,25 мм не включают в среднюю пробу, чтобы не забивать нижние сита при просеивании. Далее составляют набор из 6 сит с отверстиями диаметром от верхнего сита к нижнему 5, 3, 2, 1, 0,5 и 0,25 мм, скрепляют их и устанавливают в бак с водой так, чтобы над бортом верхнего сита находился слой воды высотой 5-6 см. Цилиндр с навеской почвы заполняют водой на 2/3 объема и оставляют стоять на 10 мин, после чего доливают водой доверху. После этого его прикрывают часовым стеклом, наклоняют до горизонтального положения и ставят вертикально. Указанную процедуру повторяют дважды до полного удаления воздуха из почвы. Затем цилиндр закрывают пробкой и выдерживают в таком положении до тех пор, пока основная масса почвенных агрегатов не упадет вниз, после чего его переворачивают и ждут, пока почва не достигнет дна. Описанный процесс повторяют 10 раз до разрушения непрочных агрегатов. Затем дном к верху цилиндр переносят к набору сит и открывают пробку цилиндра под водой. Почву, перешедшую на сито, просеивают под водой: набор сит поднимают под водой, не обнажая комков почвы на верхнем сите, и быстрым движением опускают вниз. Через 2-3 с движения повторяют. После 10 встряхиваний снимают верхние два сита и продолжают встряхивать нижние три сита еще пять раз. Оставшиеся на ситах агрегаты смывают струей воды из промывалки в большие фарфоровые чашки. После оседания почвенных агрегатов на дно чашек осторожно сливают из чашек избыток воды и переносят агрегаты почвы в заранее взвешенные небольшие фарфоровые чашки для сушки на водяной бане до воздушно-сухого состояния, а затем взвешивают на технических весах. Массу каждой фракции агрегатов в граммах умножают на 2 (поскольку расчет производится на 100 г почвы, а для анализа взято 50) и получают процентное содержание водопрочных агрегатов в почве. Содержание фракции менее 0,25 мм определяют по разности: 100% - Σ всех фракций >0,25 мм, в %. Результаты по определению доли частиц, обеспечивающих плодородие почвы, а именно с размерами в диапазоне (0.25-10.0 мм), а также коэффициентов структурности и водопрочности для данного случая представлены в Таблице 1.

Пример 3

Осуществляют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 80 кг наносапропеля (т.е. 400 л этой суспензии) на 1 га посевной площади. Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для этого случая также приведены в Таблице 1.

Пример 4

Проводят как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 100 кг наносапропеля (т.е. 500 л этой суспензии) на 1 га посевной площади. Сведения о доле частиц, обеспечивающих плодородие почвы, коэффициентах структурности и водопрочности для рассматриваемого случая см. в Таблице 1.

Пример 5 (сравнительный)

Выполняют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 20 кг наносапропеля (т.е. 100 л этой суспензии) на 1 га посевной площади. Показатели доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для указанного случая см. в Таблице 1.

Пример 6 (сравнительный)

Выполняют как и Пример 2, но с введением указанной в Примере 1 суспензии из расчета 120 кг наносапропеля (т.е. 600 л этой суспензии) на 1 га посевной площади. Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициента структурности и водопрочности для подобного случая также приведены в Таблице 1.

Пример 7 (по прототипу [2])

Осуществляют по общей технологии Примера 2, но с введением в почву сапропеля из расчета 30 т на 1 га посевной площади (в виде водной суспензии). Сведения о доле частиц, обеспечивающих плодородие почвы, коэффициентах структурности и водопрочности для такого случая представлены в Таблице 1.

Пример 8 (по прототипу [2])

Осуществляют по общей технологии Примера 2, но с введением в почву сапропеля из расчета 45 т на 1 га посевной площади (в виде водной суспензии). Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая представлены в Таблице 1.

Пример 9 (сравнительный, по прототипу [2])

Осуществляют по общей технологии Примера 2, но с введением в почву сапропеля из расчета 80 кг на 1 га посевной площади (в виде водной суспензии). Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициента структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 10 (по аналогу [1])

Осуществляют по общей технологии Примера 2, но с введением в почву оксиэтилированного полиоксиэтиленгликоля из расчета 12 кг на 1 га посевной площади (в виде водной суспензии). Значения доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 11 (сравнительный, по аналогу [1])

Осуществляют по общей технологии Примера 2, но с введением в почву оксиэтилированного полиоксиэтиленгликоля из расчета 20 кг на 1 га посевной площади (в виде водной суспензии). Результаты определения доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Пример 12 (контрольный)

Осуществляют по общей технологии Примера 2, но какой-либо добавки в почву не вводят. Данные по определению доли частиц, обеспечивающих плодородие почвы, коэффициентов структурности и водопрочности для такого случая также представлены в Таблице 1.

Как можно видеть из данных, приведенных в Таблице 1, при использовании заявляемого нами способа имеет место существенное улучшение показателей, определяющих степень структурированности почвы, а именно значительное увеличение доли частиц с размерами в диапазоне (0.25-10.0) мм, а также коэффициента структурности при практически неизменном или даже несколько лучшем коэффициенте водопрочности по сравнению с таковыми для способа-прототипа [2]. Количества же наносапропеля, требуемое для достижения поставленной цели, в 300-500 раз меньше, нежели количества сапропеля, используемого в рамках способа-прототипа [2]. Заметим в связи с этим, что заявляемый нами диапазон количеств наносапропеля из расчета на 1 га посевной площади, а именно (15.0-25.0) кг, является существенным и при выходе за его нижнюю границу имеет место снижение указанного технического эффекта, при выходе за верхнюю - по существу излишний расход наносапропеля, ибо дальнейший прирост вышеуказанных показателей при этом прекращается (см. данные Примеров 2-4 и 5-6).

ЛИТЕРАТУРА

1. Патент РФ №2430951 (аналог).

2. Т.Х. Ишкаев, Ш.А. Алиев, И.А. Яппаров. Агроэкологические аспекты комплексного использования местных сырьевых ресурсов и нетрадиционных агроруд в сельском хозяйстве. Казань, Центр инновационных технологий, 2007. С. 191-195 (прототип).

3. В.В. Медведев. Структура почвы (методы, генезис, классификация). Харьков, Изд. «13 типография», 2008. С. 402-405.

Способ повышения структурированности почвы посредством предварительного нанесения на ее поверхность структуроформирующей добавки, вспашки, боронования и культивации, отличающийся тем, что в качестве структуроформирующей добавки используют наносапропель, который наносят на поверхность почвы в количестве 60-100 кг на 1 га посевной площади.



 

Похожие патенты:

Изобретение относится к области охраны окружающей среды. Материал для рекультивации нарушенных земель содержит природный грунт и промышленные отходы.
Изобретение относится к сельскому хозяйству. Удобрение-мелиорант включает природный цеолитсодержащий глинистый минерал с карбонатами кальция CaCO3, кремнеземом SiO2, при наличии микроэлементов, причем в качестве удобрения-мелиоранта используются хвалынские глины Прикаспийской низменности с содержанием глинистых минералов, включающих гумус (1,5-2,5%), органический углерод (0,5-1,0%), CaCO3 (до 10%), SiO2 (до 60%), Al2O3 (20-30%), магниевые элементы MgO, обменные катионы Na+, Ca2+, Mg2+, изотопы калия 40K, при среднем значении относительного набухания 0,46.
Группа изобретений относится к области органической химии и может быть использована для очистки почвы от масел, в том числе от нефти, мазута, топлив, углеводородов, жидкого топлива, а также для обработки и сбора нефти, масел, мазута, топлив, углеводородов и других нефтепродуктов с твердых поверхностей, например с внутренних поверхностей цистерн для хранения нефти или нефтепродуктов, оборудования, применяемого при добыче, переработке, транспортировке нефти, оборудования, применяемого для получения нефтепродуктов, бурового шлама, гравия, песка в хранилищах или с других твердых поверхностей.
Изобретение относится к сельскому хозяйству, носит природоохранное направление и может быть использовано при рекультивации техногенно-нарушенных земель, а также при благоустройстве откосов автомобильных дорог.
Изобретение относится к области сельского и лесного хозяйств и может быть использовано при решении проблем защиты литосферы. Способ включает приготовление активного угля, внесение его в почву и выращивание культурных растений.

Изобретение относится к области сельского хозяйства, в частности к способам повышения почвенного плодородия солонцовых почв методом биологической мелиорации. Способ включает внесение мелиоранта с последующей заделкой его в почву и посевом многолетних бобовых трав.

Изобретение относится к области очистки грунтов от нефтепродуктов. При осуществлении способа очистки нефтезагрязненного грунта сооружают сетку нагнетательных скважин.

Изобретение относится к области сельского и лесного хозяйства, в частности к области рекультивации песчаных почв в зоне полупустынь, и может быть использовано для улучшения водно-воздушного и питательного режимов корнеобитаемого слоя песчаных почв.
Изобретение относится к сельскому хозяйству. Кондиционер почвы в форме гранул включает минеральные компоненты с использованием золошлаковой смеси и извести, причем он выполнен из гранул нерегулярной формы в интервале фракций от 1,0 до 6,0 мм водостойкого пористого конгломерата с плотностью от 300 до 400 кг/м3 и со структурой пористости, имеющей капиллярную и некапиллярную форму, при их соотношении между собой, равном 0,85:1, в свою очередь конгломерат состоит из сухой смеси, обработанной смешением с водой до однородной консистенции при соотношении вода:сухая смесь, равном 0,75:1, при этом сухая смесь содержит в качестве золошлаковой смеси золу биотоплива, а также цемент, негашеную известь и порообразователь.
Изобретение относится к композиционному влагоудерживающему материалу, который может быть использован в растениеводстве для улучшения водно-воздушного и питательного режима почвы, а также восстановления растительности на почвах разного типа.
Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности. Способ получения нанокапсул унаби в конжаковой камеди, в котором порошок ягод унаби диспергируют в суспензию конжаковой камеди в этаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1 или 1:3.

Изобретение относится к способу хранения природного газа метана при помощи адсорбции в общепромышленных газовых баллонах, в микропористом материале с эффективной шириной пор меньше 3 нм, высокой насыпной плотности, формованного в блоки в виде специальных шестигранных призм, у которых диаметр описанной окружности основания не менее чем на 15% меньше, чем отверстие в горловине баллона, упакованных таким образом, что внутренний объем баллона заполняется адсорбционным материалом не менее чем на 95%, может быть использовано в системах хранения, распределения и транспортировки газового топлива.

Изобретение относится к полимерным композициям на основе полипропилена и может быть использовано в производстве изделий медицинского назначения. Композиция содержит полипропилен с показателем текучести расплава 25-35 г/10 мин, дивинилстирольный термоэластопласт с показателем текучести расплава не более 1 г/10 мин, поликарбонат с показателем текучести расплава 6,5±1 г/10 мин, пространственно затрудненный амин, триаллилизоцианурат и в количестве от 0,0010 до 0,0500 мас.% наноцеллюлозу в качестве стабилизатора.

Настоящее изобретение относится к электропроводящему углеродному волокну, состоящему из нитей углеродного волокна. Описано электропроводящее углеродное волокно, состоящее из нитей углеродного волокна, которые включают в себя металлическое покрытие, в котором нити углеродного волокна включают в себя присутствующий на металлическом покрытии состав на основе по меньшей мере одного полимерного связующего, которое содержит электропроводящие наночастицы, и концентрация металлического покрытия составляет 8-25 мас.%, а концентрация электропроводящих наночастиц - 0,1-1 мас.%, в каждом случае считая на массу углеродного волокна, снабженного металлическим покрытием и составом.

Группа изобретений относится к неорганической химии. Оксид титана представлен в форме однородных сферических частиц с размером от 20 нм до 100 нм.

Группа изобретений относится к медицине. Описана фармацевтическая композиция, содержащая кристаллическую β-модификацию 2,3-бис-(гидроксиметил)хиноксалин-N,N'-диоксида, характеризующуюся определенным набором дифракционных максимумов и их интенсивностью (Iотн., %), и наночастицы серебра.
Изобретение относится к области нанотехнологии, сельского хозяйства и пищевой промышленности. Способ получения нанокапсул бетулина, при этом 100 мг порошка бетулина диспергируют в суспензию 300 мг конжаковой камеди в этаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин, далее приливают 3 мл бутилхлорид, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к медицине, в частности к онкологии и может быть использовано для терапии опухолей. Животному с опухолью внутривенно вводят раствор золотых наностержней, покрытых полиэтиленгликолем.

Изобретение относится к способам синтеза гибридных наноструктурированных материалов, а именно к способу получения гибридных плазмонно-люминесцентных маркеров. Способ заключается в формировании металлических плазмонных наночастиц на поверхности неорганических люминесцентных наночастиц, предварительно активированных ионами редкоземельных металлов.
Изобретение относится к применению штамма цианобактерий Anabaena sp. РСС 7120 для получения наночастиц серебра.

Изобретение относится к области подготовки почвенных покровов для выращивания различных сельскохозяйственных культур и может быть использовано в сельском хозяйстве. Способ включает предварительное нанесение на поверхность почвы структуроформирующей добавки, вспашку, боронование и культивацию, в качестве указанной добавки используют нанофосфорит, который наносят на поверхность почвы в количестве (8.0-12.0) кг на 1 га посевной площади. Изобретение обеспечивает возрастание плодородия почвы на 20-25%, коэффициента структурности на 25-30%, коэффициента водопрочности на 40-50%. 1 табл., 12 пр.
Наверх