Устройство для снижения вязкости нефти и нефтепродуктов

Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче и транспортировке тяжелых нефтей и нефтепродуктов. Техническим результатом изобретения является повышение эффективности процесса добычи и перекачивания тяжелых нефтей и нефтепродуктов за счет снижения их вязкости в результате одновременного кавитационного и теплового воздействия ультразвуковых стоячих волн высокой интенсивности без увеличения общего энергопотребления. Устройство содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом, при этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью. 2 з.п. ф-лы, 2 ил.

 

Устройство относится к нефтяной промышленности и может быть использовано при добыче и транспортировке тяжелых нефтей и нефтепродуктов.

Уровень техники

Известны три основных способа снижения вязкости нефтепродуктов: нагрев, применение растворителей и ультразвуковая обработка. Нагрев требует высоких энергозатрат, применение растворителей предполагает высокий расход различных химических веществ и затрат на экологическую безопасность, а ультразвуковая обработка является недостаточно эффективной и требует усовершенствования.

Известно устройство для снижения вязкости тяжелых нефтей (US №6,279,653, МПК Е21В 28/00, опубликовано 28.08.2001) [1]. В скважину добавляется водный раствор щелочи, который смешивается и реагирует с сырой тяжелой нефтью. Затем ультразвуковые волны возбуждаются в смеси для формирования эмульсии. Конструктивным недостатком устройства является сложность технической реализации, обусловленная необходимостью последующего разделения нефти и химических реагентов.

Известно устройство для интенсификации добычи вязких нефтей (US №7,059,413, МПК Е21В 43/24, опубликовано 13.06.2006) [2]. Устройство использует ультразвуковые волны высокой эффективности в донной части скважины для нагрева и снижения вязкости нефти без использования реагентов и насосов. Устройство содержит ультразвуковой генератор, расположенный на поверхности, и ультразвуковой магнитострикционный излучатель, размещенный на конце буровой трубы в скважине. Недостатком устройства является сложность технической реализации и энергоемкость. Кроме того, устройство не решает проблем дальнейшей транспортировки нефти.

Известно устройство для ультразвуковой обработки жидкостей (RU №2228912, МПК C02F 1/36, опубликовано 10.09.2002) [3], в котором в качестве источника ультразвука применяется механическое звуковое устройство, принцип действия которого основан на прерывании струй жидкости, резонансные эффекты, обусловленные геометрическими размерами устройства, не используются.

Известен способ обработки парафинистой нефти (RU №2549383, МПК C10G 15/08, опубликовано 09.01.2013) [4], заключающийся в комбинации ультразвукового и магнитного воздействий на парафинистую нефть, в котором ультразвуковое воздействие осуществляется с использованием бегущих ультразвуковых волн. Недостатком способа является низкая эффективность и сложность технической реализации исполнительного устройства.

Наиболее близким по большинству совпадающих признаков и по достигаемому результату к настоящему изобретению является устройство для снижения вязкости нефти и нефтепродуктов при помощи комплексного воздействия микроволновой энергии и ультразвукового излучения (RU №2382933, МПК F17D 1/16, опубликовано 28.10.2008) [5], принимаемое за прототип, которое содержит микроволновую и ультразвуковую секции, образующие единый модуль обработки. Устройство обеспечивает комплексное воздействие двух факторов: микроволнового излучения и ультразвукового воздействия. Микроволновое излучение нагревает нефть и снижает вероятность слипания асфальтеновых ядер в крупные агрегаты, и, как следствие, уменьшается вязкость. Кавитационные эффекты, возникающие при воздействии ультразвука на нефть, препятствуют объединению поляризованных ассоциатов в крупные структуры, диспергируя их на более мелкие группы молекул. Данное устройство характеризуется сложностью исполнения и энергозатратностью, так как при организации ультразвукового воздействия резонансные эффекты, обусловленные геометрическими размерами устройства, не используются. В качестве источников ультразвуковых колебаний использованы магнитострикционные преобразователи, массогабаритные характеристики которых уступают аналогичным характеристикам пьезопреобразователей.

Раскрытие изобретения

Техническим результатом изобретения является повышение эффективности процесса добычи и перекачивания тяжелых нефтей и нефтепродуктов за счет снижения их вязкости в результате одновременного кавитационного и теплового воздействия ультразвуковых стоячих волн высокой интенсивности без увеличения общего энергопотребления.

Согласно изобретению устройство содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом. При этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью.

Цилиндрическая стоячая волна характеризуется чередованием пучностей и узлов, при этом в пучностях цилиндрической стоячей волны происходит резонансное увеличение амплитуды ультразвуковых колебаний, достаточное для снижения вязкости тяжелых нефтей и нефтепродуктов в результате кавитационного и теплового воздействия без увеличения потребляемой мощности.

В частных случаях выполнения устройства резонансные частоты источника ультразвуковых колебаний составляют 1-100 кГц, мощность источника ультразвуковых колебаний - от 100 до 1000 Вт.

Изобретение поясняется чертежами.

На фиг. 1 представлен общий вид устройства для снижения вязкости нефти и нефтепродуктов в поперечном сечении.

На фиг. 2 представлена структура цилиндрической стоячей волны в нефти, заполняющей отрезок металлической трубы.

Устройство для снижения вязкости нефти и нефтепродуктов (фиг. 1) содержит ультразвуковой пьезоэлектрический модуль, состоящий из цилиндрического пьезоэлемента 1, электродов 2, 3, отрезка металлической трубы 4, фланцев для крепления к трубопроводу 5 и источника ультразвуковых колебаний 6 с диапазоном от 1 до 100 кГц и мощностью от 100 до 1000 Вт. Сигнал от источника ультразвуковых колебаний 6 поступает на электроды 2, 3 и возбуждает ультразвуковые колебания цилиндрического пьезоэлемента 1, которые передаются отрезку металлической трубы 4, и нефти, заполняющей трубопровод. Резонансные частоты источника ультразвуковых колебаний 6, а также диаметры цилиндрического пьезоэлемента 1 и отрезка металлической трубы 4 выбираются таким образом, чтобы в нефти, заполняющей отрезок металлической трубы 4, возбуждалась цилиндрическая стоячая волна.

Схема образования цилиндрической стоячей волны в нефти, заполняющей отрезок металлической трубы, приведена на фиг. 2. При приложении к электродам 2, 3 электрического напряжения заданной частоты, в цилиндрическом пьезоэлементе 1 и отрезке металлической трубы 4 возбуждаются ультразвуковые колебания, максимумы смещения которых находятся на внутренней границе отрезка металлической трубы 4 и внешней границе цилиндрического пьезоэлемента 1.

Таким образом, в нефти, заполняющей отрезок металлической трубы 4, устанавливается цилиндрическая стоячая волна, одна из пучностей акустического давления которой 8 находится на границе нефти и внутренней отрезка (внутренней границе отрезка) металлической трубы 4, вторая пучность акустического давления 7 располагается на центральной оси отрезка металлической трубы 4, а между ними располагаются узлы акустического давления цилиндрической стоячей волны 5, 6. При изменении резонансной частоты источника ультразвуковых колебаний в нефти образуются цилиндрические стоячие волны с кратным числом узлов и пучностей, которые также могут быть использованы для обработки нефти, заполняющей отрезок металлической трубы.

Основная мода ультразвуковых колебаний в нефти, заполняющей отрезок металлической трубы, определяется уравнением Бесселя первого рода нулевого порядка [6]. Как видно из фиг. 2, цилиндрическая стоячая волна устанавливается, когда первый максимум 8 функции Бесселя находится на внутренней границе отрезка металлической трубы 4. То есть, когда ее первая производная равна нулю на этой границе. Это условие выполняется, когда

kr=η1,

где r - радиус трубы, k - волновой вектор, η1 - первый ноль первой производной функции Бесселя первого рода нулевого порядка. Волновой вектор k определяется как

где - частота, с - скорость звука в нефти. Соответственно, искомая частота резонансных ультразвуковых колебаний равна

Например, при внутреннем диаметре трубопровода 125 мм (ГОСТ 20295-85: Трубы стальные сварные для магистральных газонефтепроводов) [7] и скорости звука в нефти 1350 м/с (RU №2133332, МПК Е21B 43/00, опубликовано 20.07.1999) [8], учитывая, что η1=3,832, получаем частоту цилиндрической стоячей волны, равную 13,18 кГц.

В качестве примера реализации рассмотрим устройство для снижения вязкости нефти и нефтепродуктов, показанное на фиг. 1, в котором сформирована цилиндрическая стоячая волна, показанная на фиг. 2. При увеличении мощности, передаваемой от источника ультразвуковых колебаний 6 (фиг. 1), амплитуда цилиндрической стоячей волны начинает расти до тех пор, пока энергия, передаваемая нефти от источника ультразвуковых колебаний 6 при помощи цилиндрического пьезоэлемента за период, станет равной потерям акустической энергии в нефти. Так как энергия цилиндрической стоячей волны пропорциональна квадрату амплитуды, то справедливо выражение

Здесь А0 - амплитуда бегущей волны, А1 - амплитуда стоячей волны, α - коэффициент акустических потерь за период. Соответственно,

В частности, при акустических потерях энергии за период, равный 20% (α=0,2), характерных для мазутов марок M100 и М40 на частоте 20 кГц при температурах мазута 40 и 30°C соответственно, амплитуда цилиндрической стоячей волны превысит амплитуду бегущей волны в 25 раз при тех же энергозатратах.

Источники информации

1. US №6,279,653, МПК Е21В 028/00, опубликовано 28.08.2001.

2. US №7,059,413, МПК Е21В 43/24, опубликовано 13.06.2006.

3. RU №2228912, МПК C02F 1/36, опубликовано 10.09.2002.

4. RU №2549383, МПК C10G 15/08, опубликовано 09.01.2013.

5. RU №2382933, МПК F17D 1/16, опубликовано 28.10.2008 – прототип.

6. Г.Н. Ватсон. Теория бесселевых функций. М.: 1949. Ч. 1.

7. ГОСТ 20295-85: Трубы стальные сварные для магистральных газонефтепроводов.

8. RU №2133332, МПК Е21В 43/00 опубликовано 20.07.1999.

1. Устройство для снижения вязкости нефти и нефтепродуктов, отличающееся тем, что оно содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом, при этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью.

2. Устройство по п. 1, отличающееся тем, что резонансные частоты источника ультразвуковых колебаний составляют 1-100 кГц.

3. Устройство по п. 1, отличающееся тем, что мощность источника ультразвуковых колебаний составляет 100-1000 Вт.



 

Похожие патенты:

Изобретение относится к формирователю электрического воздействия на вязкость потока нефти, содержащему электролизер с пластографитовыми электродами. Формирователь характеризуется тем, что содержит два триггера, которые последовательно соединены между собой и подключены «на землю», объединенным входом соединены с выходом порогового элемента, а выходами подключены к входу интегратора, выход которого подключен к входу усилителя постоянного тока, выход которого соединен с объединенными входами порогового элемента и электролизера с плоскопараллельными пластографитовыми или титановыми электродами для размещения в потоке нефти.

Изобретение может быть использовано для повышения эффективности перекачивания по трубопроводу тяжелых вязких нефтей и нефтепродуктов путем внешнего акустического воздействия на стенку трубопровода.

Группа изобретений относится к подготовке высоковязких нефтепродуктов к транспортировке. Устройство содержит корпус со струеобразователем и электромагнит с токоподводом.
Изобретение относится к транспортировке высоковязких нефтепродуктов по трубопроводу. По длине трубопровода через равные интервалы на нефтепродукты воздействуют акустическими колебаниями с обеспечением образования пристеночного жидкого слоя нефтепродуктов.

Изобретение относится к подготовке высоковязкой нефти для транспортировки по трубопроводу. Проводят термообработку нефти путем ее нагрева в сырьевом теплообменнике с последующим разделением потока термообработанной нефти на две части, одну из которых направляют на термокрекинг, а другую - на смешение с продуктами термокрекинга и последующее охлаждение полученной сырьевой смеси до температуры ее перекачки по трубопроводу.

Способ и устройство предназначены для перекачивания жидкостей и может найти применение в нефтедобывающей, нефтехимической, химической и других отраслях промышленности, а также в процессах, связанных с транспортом высоковязких жидкостей и эмульсий.

Изобретение относится к транспорту нефти и может быть использовано в нефтяной промышленности для подготовки парафинистой нефти к трубопроводному транспорту путем уменьшения вязкости и температуры застывания за счет снижения содержания твердых парафинов.

Изобретение относится к способу промотирования кинетического смешивания в граничном слое в зоне нелинейной вязкости. Осуществляют подачу в технологическое оборудование полимера и наполнителя.

Способ предназначен для подготовки к трубопроводному транспорту высоковязких и парафинистых нефтей и одновременной утилизации попутного нефтяного газа. Способ включает нагрев нефти в рекуперационном теплообменнике, введение в нефть в качестве разбавителя продукта термолиза фракции нефти 340-540°C, смешанной с фракциями н.к.

Изобретение относится к комплексу для доставки природного газа потребителю, включающему средство его трансформирования в газогидрат. Средство содержит реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования, средство отгрузки газогидрата в транспортное средство снабженное грузовыми помещениями, выполненными с возможностью поддержания термодинамического равновесия, исключающего диссоциацию газогидрата, и средство разложения газогидрата с получением газа.

Изобретение относится к области трубопроводного транспорта углеводородных жидкостей. Противотурбулентная присадка с антикоррозионными свойствами содержит сверхвысокомолекулярный полимер альфа-олефинов, продукт конденсации высших аминов с числом атомов углерода 6-30 со степенью оксиалкилирования 2-50 при использовании в качестве оксиалкилирующего агента эпоксисоединения с числом атомов углерода 2-6 с двухосновной органической кислотой с числом атомов углерода 3-9, солвент. В качестве солвента используют смесь линейных и разветвленных алифатических одноатомных и многоатомных спиртов и/или эфиров с числом атомов углерода 1-15. Технический результат - снижение гидравлического сопротивления в магистральном трубопроводе и, как следствие, увеличение его пропускной способности с одновременной защитой от коррозии внутренней поверхности магистрального трубопровода и сопряженного с ним оборудования, используемого для транспортировки углеводородных жидкостей. 1 з.п. ф-лы, 1 табл., 25 пр.

Настоящее изобретение относится к способу подготовки высоковязкой нефти к транспортировке по трубопроводу, который может быть использован в нефтедобывающей промышленности. Способ включает предварительный нагрев исходной нефти, термокрекинг с закалочным охлаждением продуктов термокрекинга и последующим их разделением в испарителе на жидкую и газопарожидкостную фазы, при этом последнюю разделяют в газосепараторе на газ испарителя, используемый в качестве топлива, и дистиллят, а жидкую фазу испарителя подают в качестве теплоносителя в теплообменники и на смешение с вышеупомянутым дистиллятом с последующим охлаждением до температуры транспортировки по трубопроводу. При этом исходную нефть после предварительного нагрева подвергают разделению в сепараторе на жидкую фазу - фракцию выше 200°С и газопарожидкостную фазу, которую разделяют в дополнительном газосепараторе на газ, подаваемый на смешение с вышеупомянутым газом испарителя, и дистилляты, подаваемые на смешение с дистиллятами, выделенными из продуктов термокрекинга, и с жидкой фазой испарителя, при этом часть жидкой фазы сепаратора - фракцию выше 200°С подвергают термокрекингу, а другую часть жидкой фазы сепаратора - фракцию выше 200°С используют при закалочном охлаждении продуктов термокрекинга с последующим разделением полученной сырьевой смеси в испарителе. Предлагаемый способ позволяет повысить стабильность термообработанной нефти, направляемой в трубопровод. 1 з.п. ф-лы, 1 ил.

Изобретение относится к неагломерирующим противотурбулентным присадкам, способу их получения и может быть использовано для снижения гидродинамического сопротивления в трубопроводе при турбулентном режиме течения углеводородов. Способ включает использование сверхвысокомолекулярных полиизобутилена или сополимеров изобутилена с высшими α-олефинами или смесей полиизобутилена с поли α-олефинами для получения жидкой дисперсии (со)полимера (ЖД ПТП) и сухой дисперсии (со)полимера (СД ПТП) и их применение в качестве противотурбулентной присадки. Способ реализуют путем использования трех технологических вариантов. Также описаны композиция ЖД ПТП и композиция СД ПТП. Технический результат - упрощение получения ПТП, расширение их ассортимента, возможности и температурного диапазона при использовании на трансполярных трубопроводах и в зимних условиях, достижение более высокого качества и высокой эффективности присадки. 4 н. и 33 з.п. ф-лы, 6 табл., 71 пр.

Изобретение относится к транспорту высоковязкой нефти и может быть использовано для подготовки парафинистой нефти к трубопроводному транспорту в нефтяной промышленности. Предложена установка, включающая систему охлаждения и стабилизации, состоящую из холодильника-конденсатора и дефлегматора, фракционирующую колонну, блок термолиза с сепараторами высокого и низкого давления, испарителями высокого и низкого давления и эжектором, а также печь. При работе установки нефть нагревают в холодильнике-конденсаторе и направляют во фракционирующую колонну, в которую подают пары термолиза, с верха которой выводят пары фракционирования, а с низа - остаточную фракцию, которую после смешения с циркулирующим остатком термолиза нагревают в печи и разделяют в сепараторе высокого давления с получением паров сепарации и остатка, который направляют в испаритель высокого давления, из которого выводят пары термолиза и остаток, который после смешения с парами сепарации подают в испаритель низкого давления, из которого пары термолиза низкого давления подают в линию подачи паров термолиза, а остаток направляют в сепаратор низкого давления, из которого пары сепарации низкого давления подают в эжектор, расположенный на линии подачи паров термолиза, а остаток термолиза разделяют на циркулирующий поток и балансовый поток, который подают в линию вывода паров фракционирования. Полученную смесь охлаждают в холодильнике-конденсаторе, из которого выводят тяжелую фракцию и пары, которые конденсируют и стабилизируют в дефлегматоре с получением газа стабилизации и стабильного конденсата, который смешивают с тяжелой фракцией с получением стабильной подготовленной нефти. Технический результат - упрощение установки и исключение опасности закоксовывания фракционирующей колонны. 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче и транспортировке тяжелых нефтей и нефтепродуктов. Техническим результатом изобретения является повышение эффективности процесса добычи и перекачивания тяжелых нефтей и нефтепродуктов за счет снижения их вязкости в результате одновременного кавитационного и теплового воздействия ультразвуковых стоячих волн высокой интенсивности без увеличения общего энергопотребления. Устройство содержит ультразвуковой пьезоэлектрический модуль, соединенный с трубопроводом при помощи фланцев, состоящий из цилиндрического пьезоэлемента с расположенным внутри отрезком металлической трубы, имеющим акустический контакт с пьезоэлементом, при этом диаметры цилиндрического пьезоэлемента и отрезка металлической трубы, а также резонансные частоты источника ультразвуковых колебаний соответствуют условию возбуждения цилиндрической стоячей волны в отрезке металлической трубы, заполненной нефтью. 2 з.п. ф-лы, 2 ил.

Наверх