Способ получения метилового эфира 2-галоген-6-алкил-3-цианоизоникотиновых кислот

Изобретение относится к способу получения метилового эфира 2-галоген-6-алкил-3-цианоизоникотиновых кислот общей формулы

где R=CH3, X=Cl; R=CH3, X=Br; R=С(CH3)3, X=Cl, характеризующегося тем, что смесь, состоящую из 0,005 моль 4-оксопентан-1,1,2,2-тетракарбонитрила или 5,5-диметил-4-оксогексан-1,1,2,2-тетракарбонитрила, 0,1 моль метанола и 0,03 моль концентрированной хлороводородной или 0,015 моль бромистоводородной кислоты перемешивают при температуре 70-80°C до получения целевого продукта. Полученные соединения могут найти применение в качестве противотуберкулезных и бактерицидных препаратов, антидепрессантов, средств защиты растений и как исходных веществ для получения пиридоксина. 3 пр.

 

Изобретение относится к области органической химии, а именно к области получения функционально замещенных производных изоникотиновой кислоты, конкретно метилового эфира 2-галоген-6-алкил-3-цианоизоникотиновых кислот формулы

где R=СН3, Х=Cl; R=СН3, Х=Br; R=С(СН3)3, Х=Cl, которые могут найти применение в качестве противотуберкулезных и бактерицидных препаратов, антидепрессантов, средств защиты растений и как исходные вещества для получения пиридоксина.

Известные способы получения эфиров изоникотиновой кислоты, как правило, заключаются в обработке исходной кислоты соответствующим спиртом. Известен способ получения различных эфиров изоникотиновой кислоты путем взаимодействия соответствующего спирта с изоникотиновой кислотой в присутствии кислотного катализатора при нагревании от 120°С до 280°С в течение 8-18 часов [CN 103044324 A, C07D 213/79; C07D 213/803, опубл. 17.04.2013]. Также известен способ получения эфиров 2,6-дигалогенизоникотиновых кислот из соответствующих кислот и их производных [ES 2062089 T3, A01N 43/40; A01N 43/50; A01N 43/653; C07D 213/79; C07D 233/54; C07D 249/08; C07D 401/12; C07D 405/12; C07D 409/12; C07D 521/00, опубл. 16.12.1994], варианты синтеза отличаются в зависимости от используемого исходного вещества, но всегда применяется повышенная температура и катализатор. Известен способ получения метилового эфира 2-метилизоникотиновой кислоты путем озонирования N,N-диметил-2-(2-метилпиридин-4-ил)етен-1-амина и обработкой полученного продукта метанолом в присутствии кислотного катализатора.

Недостатком данных способов является то, что они не позволяют получить алкилзамещенные 2-оксо-1,2-дигидропиридин-3,4-дикарбонитрилы.

Наиболее близким к заявленному решению является способ получения метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты из метилового эфира 6-метил-2-оксо-3-циано-1,2-дигидропиридин-4-карбоновой кислоты путем взаимодействия последнего со смесью оксихлорида фосфора и пятихлористого фосфора при комнатной температуре [Synthesis of 1H-Pyrazolo[3,4-b]pyridine and Related Compounds. Yoshida K., Otomasu H.J. Pharm. Soc. Japan. Vol. 96 (1976). No. 1. P 33-36].

К недостаткам данного способа можно отнести сложность получения исходного компонента.

Задачей данного изобретения является получение не описанных в литературе метиловых эфиров 2-галоген-6-алкил-3-цианоизоникотиновых кислот, которые могут найти применение в качестве противотуберкулезных и бактерицидных препаратов, антидепрессантов, средств защиты растений и как исходные вещества для получения пиридоксина, а также получение описанного в литературе метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты за счет использования более доступных реагентов, что позволит расширить арсенал средств данного назначения.

Техническим результатом является получение ранее не описанных в литературе метиловых эфиров 2-галоген-6-алкил-3-цианоизоникотиновых кислот и получение метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты за счет использования более доступных реагентов.

Технический результат достигается тем, что способ получения метилового эфира 2-галоген-6-алкил-3-цианоизоникотиновых кислот общей формулы

где R=CH3, Х=Cl; R=CH3, X=Br; R=C(CH3)3, X=Cl, согласно изобретению, характеризуется тем, что смесь, состоящую из 0,005 моль 4-оксопентан-1,1,2,2-тетракарбонитрила или 5,5-диметил-4-оксогексан-1,1,2,2-тетракарбонитрила, 0,1 моль метанола и 0,03 моль концентрированной хлороводородной или 0,015 моль бромистоводородной кислоты перемешивают при температуре 70-80°С до получения целевого продукта.

Сопоставительный анализ заявляемого решения с известными показывает, что в разработанном способе используются доступные исходные реагенты. В известном способе получения метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты [J. Pharm. Soc. Japan. Vol. 96 (1976). No. 1. P 33-36] исходным реагентом является метиловый эфир 6-метил-2-оксо-3-циано-1,2-дигидропиридин-4-карбоновой кислоты, образующийся в результате многостадийного синтеза. В предлагаемом способе метиловый эфир 2-галоген-6-алкил-3-цианоизоникотиновых кислот синтезируют из 4-оксоалкан-1,1,2,2-тетракарбонитрилов одностадийно, что значительно упрощает метод получения. Исходные 4-оксоалкан-1,1,2,2-тетракарбонитрилы образуются при взаимодействии тетрацианоэтилена и кетонов [RU 2577537, С07С 253/30, С07С 255/17, С07С 255/31, С07С 255/40, C07D 333/24, опубл. 20.03.2016], широко применяемых в препаративной химии.

Сущность изобретения представлена в примерах.

Пример 1. Способ получения метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты.

Растворяли 0,005 моль 4-оксопентан-1,1,2,2-тетракарбонитрила в 0,1 моль метанола и при перемешивании приливали 0,03 моль соляной кислоты 30%-ной концентрации. Перемешивали на магнитной мешалке при температуре 70-80°С в течение часа. После окончания реакции (ТСХ), реакционную массу охлаждали и разбавляли 4-5-кратным избытком воды. Образовавшийся осадок отфильтровали, промывали водой и пропанолом-2. Выход 0,86 г (82%), т.пл. 116°С. ИК спектр, ν, см-1: 2235 (C≡N), 1735 (С=O). Спектр ЯМР 1Н (ДМСО-d6), δ, м.д.: 2.63 с (3Н, СН3), 3.95 с (3Н, СН3), 7.95 с (1H, pyr). Масс-спектр, m/z (Iотн., %): 210 (50), 212 (16) [М]+. Найдено, %: С 51.23; Н 3.36; N 13.33. C9H7ClN2O2. Вычислено, %: С 51.32; Н 3.35; N 13.30.

Пример 2. Способ получения метилового эфира 2-бром-6-метил-3-цианоизоникотиновой кислоты.

Способ осуществляется аналогично способу 1, вместо 0,03 моль 30%-ой соляной кислоты используется 0,015 моль 40%-ной бромистоводородной кислоты. Выход 0,97 г (76%), т.пл. 106-107°С. ИК спектр, ν, см-1: 2231 (C≡N), 1732 (С=O). Спектр ЯМР 1Н (ДМСО-d6), δ, м.д.: 2.63 с (3Н, СН3), 3.94 с (3Н, СН3), 7.96 с (1Н, pyr). Масс-спектр, m/z (Iотн., %): 254 (32), 256 (31) [М]+. Найдено, %: С 42.23; Н 2.76; N 11.05. C9H7BrN2O2. Вычислено, %: С 42.38; Н 2.77; N 10.98.

Пример 3. Способ получения метилового эфира 6-трет-6утпл-2-хлор-3-цианоизоникотиновой кислоты.

Способ осуществляется аналогично способу 1, вместо 4-оксопентан-1,1,2,2-тетракарбонитрила используется 5,5-диметил-4-оксогексан-1,1,2,2-тетракарбонитрил. Выход 0,97 г (77%), т.пл. 103-104°С. ИК спектр, ν, см-1: 2233 (C≡N), 1736 (С=O). Спектр ЯМР 1Н (ДМСО-d6), δ, м.д.: 1.34 с (9Н, 3СН3), 3.96 с (3Н, СН3), 7.97 с (1Н, pyr). Масс-спектр, m/z (Ioтн, %): 252 (11), 254 (3) [М]+. Найдено, %: С 57.09; Н 5.16; N 11.08. C12H13ClN2O2. Вычислено, %: С 57.04; Н 5.19; N 11.09.

Таким образом, предлагаемый способ позволяет упростить метод синтеза метилового эфира 6-метил-2-хлор-3-цианоизоникотиновой кислоты и получить ранее неизвестные метиловый эфир 2-бром-6-метил-3-цианоизоникотиновой кислоты и метиловый эфир 6-трет-бутил-2-хлор-3-цианоизоникотиновой кислоты, которые могут найти применение в качестве противотуберкулезных и бактерицидных препаратов, антидепрессантов, средств защиты растений и как исходные вещества для получения пиридоксина.

Способ получения метилового эфира 2-галоген-6-алкил-3-цианоизоникотиновых кислот общей формулы

где R=CH3, X=Cl; R=CH3, X=Br; R=С(CH3)3, X=Cl, характеризующийся тем, что смесь, состоящую из 0,005 моль 4-оксопентан-1,1,2,2-тетракарбонитрила или 5,5-диметил-4-оксогексан-1,1,2,2-тетракарбонитрила, 0,1 моль метанола и 0,03 моль концентрированной хлороводородной или 0,015 моль бромистоводородной кислоты перемешивают при температуре 70-80°C до получения целевого продукта.



 

Похожие патенты:

Изобретение относится к способу получения метил 4-амино-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоксилата, включающему добавление метилизобутилкетона к водному раствору, содержащему 4-хлор-2-фтор-3-метоксифенилбороновую кислоту, с получением органической фазы, содержащей 4-хлор-2-фтор-3-метоксифенилбороновую кислоту, и водной фазы; отделение органической фазы, содержащей 4-хлор-2-фтор-3-метоксифенилбороновую кислоту, от водной фазы; взаимодействие 4-хлор-2-фтор-3-метоксифенилбороновой кислоты с метил 4-(ацетиламино)-3,6-дихлорпиридин-2-карбоксилатом в метилизобутилкетоне с получением метил 4-(ацетиламино)-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоксилата; и деацетилирование метил 4-(ацетиламино)-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоксилата с получением метил 4-амино-3-хлор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоксилата.
Изобретение относится к способу выделения никотиновой кислоты из водного раствора, включающему фильтрацию водного раствора никотиновой кислоты через слой гранулированного серпентинита и анализ отфильтрованной водной фазы спектрофотометрическим методом.

Изобретение относится к способу получения соединения, представленного формулой: , где R1 представляет собой необязательно замещенный фенил; L представляет собой связывающую группу формулы: , где R7a и R7b представляют собой водород; R8 представляет собой водород; и индекс n равен 1; или его фармацевтически приемлемой соли, включающий: А) взаимодействие борной кислоты или ее сложного эфира, представленной формулой: , где Y представляет собой OR20, R20 представляет собой водород, с 3,5-дигалоген-2-цианопиридином, представленным формулой: , каждый Z независимо представляет собой хлор или бром, в присутствии катализатора, с образованием необязательно замещенного в положении 5 фенил-3-галоген-2-цианопиридина, представленного формулой: ; В) взаимодействие необязательно замещенного в положении 5 фенил-3-галоген-2-цианопиридина, полученного на стадии (А), с алкоксид анионом, имеющим формулу: где R2 представляет собой C1-C6алкил, с образованием 5 необязательно замещенного в положении 5 фенил-3-алкокси-2-цианопиридина, представленного формулой: ; С) взаимодействие необязательно замещенного в положении 5 фенил-3-алкокси-2-цианопиридина, полученного на стадии (В), с кислотой с образованием необязательно замещенного в положении 5 фенил-3-гидрокси-2-карбоксипиридина, представленного формулой: ; D) взаимодействие необязательно замещенного в положении 5 фенил-3-гидрокси-2-карбоксипиридина, полученного на стадии (С), с аминокислотой, представленной формулой: где X представляет собой -OR3; R3 представляет собой C1-C6алкил; и Е) гидролиз соединения, полученного на стадии D). Изобретение также относится к способу получения соединения, представленного формулой: Технический результат: получение [(3-гидроксипиридин-2-карбонил)амино]алкановых кислот, их сложных эфиров и амидов новым упрощённым способом.

Изобретение относится к способу получения фенилзамещенного гетероциклического производного, представленного формулой (3), включающему взаимодействие соединения, представленного формулой (1), где R1 представляет собой атом водорода или атом галогена; R2 представляет собой атом водорода, цианогруппу, нитрогруппу, атом галогена, формильную группу или галогенметильную группу; А представляет собой атом водорода, (С1-С8)-алкильную группу, (С3-С6)-циклоалкильную группу, фенильную группу, атом фтора (только когда X представляет собой связь) или защитную группу для гидроксильной группы (только когда X представляет собой атом кислорода), А может быть замещен 1-3 заместителями, такие заместители включают группу, выбранную из группы, состоящей из атома галогена, (С1-С4)-алкильной группы, (С1-С4)-алкоксигруппы, (С1-С4)-алкилтиогруппы, (С3-С6)-циклоалкильной группы, фенильной группы, феноксигруппы и пиридильной группы; X представляет собой связь (только когда А представляет собой фенильную группу или атом фтора) или атом кислорода; и Y представляет собой удаляемую группу, и соединения, представленного формулой (2), где Н представляет собой атом водорода; R3 представляет собой -COOR3a или -COR3b; R3a представляет собой атом водорода, (С1-С4)-алкильную группу или защитную сложноэфирную группу для карбоксильной группы; R3b представляет собой защитную группу амидного типа для карбоксильной группы, образующую амид с соседней карбонильной группой; R4 представляет собой атом водорода, атом галогена, (С1-С4)-алкил; в присутствии (i) соединения палладия, (ii) лиганда, способного координироваться к соединению палладия, или его соли, (iii) основания, (iv) (С1-С40)-карбоновой кислоты или ее соли, (v) по меньшей мере, одной добавки, выбранной из группы, состоящей из меди и ее солей и ее комплексов и серебра и его комплексов.

Изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I где R представляет собой (C1-C4)алкил, циклопропил, (C2-C4)алкенил или фенил, содержащий от 1 до 4 заместителей, в качестве которых независимо выбирают галоген, (C1-C4)алкил, (C1-C4)галогеналкил, (C1-C4)алкокси или (C1-C4)галогеналкокси; R1 представляет собой (C1-C12)алкил или незамещенный или замещенный (C7-C11)арилалкил; который включает следующие стадии: a) фторирование 3,4,5,6-тетрахлорпиколинонитрила источником фторид-ионов, b) аминирование 3-хлор-4,5,6-трифтор-2-пиколинонитрила аммиаком, c) замещение фторзаместителя в положении 6 4-амино-3-хлор-5,6-дифторпиколинонитрила с помощью бромоводорода (HBr), хлороводорода (HCl) или йодоводорода (HI) и гидролиз нитрила, d) этерификацию 4-амино-3-хлор-5-фтор-6-галогенпиколинамида сильной кислотой и спиртом (R1OH) и e) сочетание 4-амино-3-хлор-5-фтор-6-галогенпиколината формулы E с арил-, алкил- или алкенилметаллоорганическим соединением.

Изобретение относится к способу получения 6-(арил)-4-аминопиколината формулы , где Q представляет собой Cl или Br; R представляет собой С1-С4алкил; W представляет собой H, F или Cl; X представляет собой H, F, Cl или С1-С4алкокси; Y представляет собой галоген; Z представляет собой H или F; включающий нагревание эфира 3-галоген-6-(арил)-4-иминотетрагидропиколиновой кислоты формулы (I), где R представляет собой С1-С4алкил; R1 представляет собой -OS(O)2R2, -OC(O)R2 или -OC(O)OR2; R2 представляет собой С1-С4алкил или незамещенный или замещенный фенил; Q представляет собой Cl или Br; W представляет собой H, F или Cl; X представляет собой H, F, Cl или С1-С4алкокси; Y представляет собой галоген; Z представляет собой H или F; при температуре от 25°С до 150°С в присутствии полярного растворителя и выделение продукта.

Настоящее изобретение относится к соединениям, представленным формулой (I), где Х1 и X2 независимо представляют собой СН или N; кольцо U представляет собой бензольное кольцо, пиразольное кольцо, 1,2,4-оксадиазольное кольцо, 1,2,4-тиадиазольное кольцо, изотиазольное кольцо, оксазольное кольцо, пиридиновое кольцо, тиазольное кольцо или тиофеновое кольцо; m представляет собой целое число, имеющее значение от 0 до 1; n представляет собой целое число, имеющее значение от 0 до 3; R1 представляет собой гидроксигруппу или C1-6 алкил; R2 представляет собой любой из (1)-(3): (1) атом галогена; (2) гидроксигруппу; (3) C1-6 алкил, или C1-6 алкокси, каждый из которых может независимо содержать любую группу, выбранную из группы заместителей α; группа заместителей α включает атом фтора и гидроксигруппу, или его фармацевтически приемлемая соль.

Изобретение относится к способу, включающему взаимодействие соединения, представленного следующей формулой (1), где R1 представляет собой атом водорода или атом галогена; R2 представляет собой атом водорода, циано группу, нитро группу, атом галогена, формильную группу или галогенметильную группу; A представляет собой атом водорода, C1-C8 алкильную группу, C3-C6 циклоалкильную группу, фенильную группу, атом фтора (только когда X представляет собой связь), или защитную группу для гидроксильной группы (только когда X представляет собой атом кислорода), где A может быть замещено от 1 до 3 заместителями, такой заместитель, представляющий группу, выбран из группы, состоящей из атома галогена, С1-C4 алкильной группы, C1-C4 алкоксигруппы, C1-C4 алкилтиогруппы, C3-C6 циклоалкильной группы, фенильной группы, феноксигруппы и пиридильной группы; X представляет собой связь (только когда A представляет собой фенильную группу или атом фтора) или атом кислорода; и Y представляет собой уходящую группу и соединения, представленного следующей формулой (2): H представляет атом водорода; R3 представляет собой COOR3a или COR3b; R3a представляет собой атом водорода, C1-C4 алкильную группу или защитную группу сложноэфирного типа для карбоксильной группы; R3b представляет собой защитную группу амидного типа для карбоксильной группы, защитную группу образующую амид с соседней карбонильной группой; R4 представляет собой атом водорода, атом галогена или C1-C4 алкильную группу; в присутствии соединения переходного металла, выбранного из группы, состоящей из палладия нулевой валентности и соли моно- и дивалентного палладия и (n) лиганда фосфинового типа, способного к координированию соединения переходного металла, чтобы получить фенил-замещенное гетероциклическое производное, представленное следующей формулой (3), где A, X, R1 и R3 являются такими, как определено в формуле (1); и R3 и R4 являются такими, как определено в формуле (2).

Изобретение относится к сульфонамидным соединениям формулы (1) или к их фармацевтически приемлемым солям, в которой А представляет собой фенил, необязательно замещенный от 1 до 2 атомами галогена, C1-6 алкильной группой, трифторметильной группой, С1-6 алкоксигруппой или -SCH3 группой, тиофенил, необязательно замещенный C1-C6 алкильной группой или атомом галогена, пиридинил, необязательно замещенный атомом галогена, нафталенил или дигидроинденил; R1 представляет собой следующие формулы (Rla) или (Rlb): [в формулах (Rla) и (Rlb) Ar1 представляет собой следующие формулы (Arla), (Arlb) или (Ar1c): (каждый R5 и R6 независимо представляет собой атом водорода, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена); Ar2 представляет собой следующие формулы (Ar2a), (Ar2b) или (Ar2c): (каждый R7 и R8 независимо представляет собой атом водорода, гидроксильную группу, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, или C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена, аминогруппу, нитрогруппу, С2-6 ацильную группу, или R7 и R8 образуют вместе -СН2СН2О-; R9 представляет собой атом водорода или -J-COOR10; J представляет собой ковалентную связь, алкилен, содержащий от 1 до 5 атомов углерода, алкенилен, содержащий от 2 до 5 атомов углерода, или алкинилен, содержащий от 2 до 5 атомов углерода, где один атом углерода в упомянутых алкиленовых группах может быть заменен атомом кислорода, атомом серы, NR11, CONR11 или NR11CO в любом химически разрешенном положении; R11 представляет собой атом водорода; и R10 представляет собой атом водорода); и р равно 0 или 1]; R2 представляет собой C1-6 алкильную группу; каждый R3 и R4 независимо представляет собой C1-6 алкильную группу; * обозначает асимметрический атом углерода; и m равно целому числу от 1 до 3.

Изобретение относится к производным 5-бромникотиновой кислоты: где R1 - водород;R2 - 4-метокси-6-метил-1,3,5-триазил-2, или протон водорода, или 2-метил-1,2,4-триазолил-1. Соединения могут найти применение в медицинской практике для коррекции нарушений ритма сердечной деятельности. Технический результат - создание нового соединения, обладающего антиаритмической активностью. 2 табл.
Наверх