Малоинерционный термопреобразователь

Изобретение относится к области электроизмерительной техники, а именно к устройствам термопреобразователей, и может быть использовано для измерения быстроменяющихся температурных процессов, например температуры капель воды. Сущность: термопреобразователь содержит кабели с термоэлектродами, например хромель и копель, спай и средство крепления кабелей. Термоэлектрод одного термопарного кабеля и термоэлектрод другого расположены напротив друг друга и освобождены от оболочки кабеля на длине, достаточной для исключения влияния теплоемкости кабеля на показания термопреобразователя, и образуют спай. Крепление концов кабелей, обращенных к спаю, осуществляют на корпусе, например, с помощью фольги, контактной сваркой. Ниже спая на корпусе закреплен элемент для осуществления стекания капель воды со спая. Технический результат: улучшение инерционных характеристик термопреобразователя и повышение точности измерения температуры газокапельного потока в условиях, когда масса капель сопоставима с размером спая. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое техническое решение относится к области электроизмерительной техники, а именно к устройству термопреобразователей, в которых возникает термоэлектродвижущая сила пропорционально температуре, и может быть использовано для измерения быстроменяющихся температурных процессов, например температуры капель воды в сосудах с давлением.

Известны термопреобразователи кабельные, содержащие термоэлектроды с изолированным или неизолированным рабочим спаем в оболочке (см. ГОСТ 23847-79) с диаметром кабеля 1,0 мм и более с показателем тепловой инерции ε более 0,1 с, которые не позволяют измерять температуру быстроменяющихся температурных процессов.

Известны также термопреобразователи с утоненным рабочим участком (см. ГОСТ 23847-79) с диаметром до 0,5 мм с показателем тепловой инерции ε менее 0,1 с, которые в основном применяются для измерения температуры поверхности, поскольку в потоке среды имеют низкую механическую прочность.

Известны термопреобразователи, имеющие помещенный в защитную конструкцию кабель с открытым спаем (см., например, книгу «Температурные измерения в ядерных реакторах», Москва, Атомиздат, 1975 г., стр. 126, рис. 3.13). Такие термопреобразователи имеют показатель тепловой инерции лучше, чем очехлованные, однако их несущая конструкция обладает значительными габаритами, которая вносит возмущения в контролируемый объем.

Известен термопреобразователь, содержащий открытый спай в виде точечной головки и два проводника. Термопреобразователь снабжен проволочным элементом в виде витка из нихрома, которым обматывают точечную головку или один из двух проводников для нагрева спая (см., например, патент России №2390783, кл. G01P 5/10, опубликован 27.05.2010 г.). Недостатком термопреобразователя является низкая механическая прочность конструкции.

Решаемая задача - создание конструкции термопреобразователя с показателем тепловой инерции менее 0,1 с, обладающего высокой механической прочностью.

Техническим результатом является создание конструкции термопреобразователя для измерения быстроменяющихся температурных процессов, например температуры капель воды

Указанный технический результат достигается тем, что в малоинерционном термопреобразователе, содержащем кабели с термоэлектродами, например хромель и копель, спай и средство крепления кабелей, термоэлектрод одного термопарного кабеля и термоэлектрод другого расположены напротив друг друга и освобождены от оболочки кабеля на длине, достаточной для исключения влияния теплоемкости кабеля на показания термопреобразователя, и образуют спай; а крепление концов кабелей, обращенных к спаю, осуществляют на корпусе, например, с помощью фольги, контактной сваркой.

Ниже спая на корпусе закреплен элемент для осуществления стекания капель воды со спая.

На фиг. 1 изображено предлагаемое техническое решение.

На фиг. 2 изображено предлагаемое техническое решение с элементом для стекания капель воды со спая термопреобразователя.

Термоэлектрод 1 (например, хромель) одного термопарного кабеля 2 и термоэлектрод 3 (например, копель) другого термопарного кабеля 4 расположены напротив друг друга и на длине l от оболочки изоляции выполняется спай 5. Длина l выбирается такой, чтобы исключить влияние теплоемкости кабеля на показания термопреобразователя, например не менее 30 диаметров кабеля с каждой стороны спая. Термоэлектроды устанавливаются на корпусе 6, например, при помощи фольги 7 контактной сваркой. В таком исполнении спай термопреобразователя надежно закреплен в точке измерения и не перемещается под воздействием потока среды.

При необходимости, ниже спая 5 устанавливается элемент 8 для осуществления стекания на него капель с рабочего спая термопребразователя за счет изменения силы поверхностного натяжения капли. Элемент 8 может быть выполнен в виде одной или нескольких игл различной формы.

Термопреобразователь работает следующим образом: термопреобразователь устанавливается в контролируемый объем, при попадании капли воды на спай 5 изменяется его температура, возникающая термоэлектрическая движущая сила регистрируется вторичным прибором. Тепловая инерция термопреобразователя (показатель менее 0,1 с) позволяет проводить измерения быстроменяющихся температурных процессов в контролируемом объеме. Работа термопреобразователя проверена в стендовых условиях.

1. Малоинерционный термопреобразователь, содержащий кабели с термоэлектродами, например хромель и копель, спай и средство крепления кабелей, отличающийся тем, что термоэлектрод одного термопарного кабеля и термоэлектрод другого расположены напротив друг друга и освобождены от оболочки кабеля на длине, достаточной для исключения влияния теплоемкости кабеля на показания термопреобразователя, и образуют спай; а крепление концов кабелей, обращенных к спаю, осуществляют на корпусе, например, с помощью фольги, контактной сваркой.

2. Малоинерционный термопреобразователь по п. 1, отличающийся тем, что ниже спая на корпусе закреплен элемент для осуществления стекания капель воды со спая.



 

Похожие патенты:

Изобретение относится к области термоэлектричества, а именно к технологии изготовления конструктивных элементов для термоэлектрических модулей. Сущность: способ изготовления конструктивного элемента (12) для термоэлектрического модуля (15) имеет следующие шаги: а) обеспечение по меньшей мере одной нити (1), имеющей протяженность (2), б) обеспечение трубчатого приемного элемента (13), имеющего внешнюю периферическую поверхность (14), в) нанесение термоэлектрического материала (3) по меньшей мере на одну нить (1), г) наматывание по меньшей мере одной нити (1) вокруг трубчатого приемного элемента (13), так что на внешней периферической поверхности (14) образовывается по меньшей мере один кольцеобразный конструктивный элемент (12) для термоэлектрического модуля (15).

Изобретение относится к теплоэнергетике, а именно к системам теплоснабжения зданий. Термоэлектронасос содержит подающий трубопровод (1) с термоэлектрическим блоком (3), соединенным электропроводкой с инвертором (4), аккумулятором (5) и электродвигателем насоса (6), установленным в трубопроводе (2).

Изобретение относится к термоэлектричеству. Технический результат: получение термоэлектрического элемента с высоким термическим сопротивлением, который требует меньше полупроводникового материала.

Изобретение относится к термоэлектрическим преобразователям энергии. Сущность: термоэлектрический преобразователь содержит по меньшей мере одну термоэлектрическую ячейку с последовательно соединенными пленочными термоэлектрическими ветвями (1, 2), выполненными из полупроводниковых материалов и расположенными между теплообменными слоями (11, 12).

Изобретение относится к термоэлектрическому преобразованию энергии и может быть использовано для построения термоэлектрических батарей. Сущность: термоэлектрическая батарея содержит цельное металлическое основание, на котором размещены полупроводниковые стержни одного типа проводимости с образованием спаев.

Изобретение относится к термоэлектрическим устройствам и их изготовлению. Сущность: термоэлектрический модуль (1), который простирается в продольном направлении (9), с внешней трубкой (2) и расположенной внутри внешней трубки (2) внутренней трубкой (3).

Изобретение относится к термоэлектрическим устройствам теплообмена. Технический результат: повышение эффективности устройства за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями.

Изобретение относится к области термоэлектричества и может быть использовано в термоэлектрических генераторах. Технический результат: повышение эффективности за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями, уменьшением паразитных джоулевых тепловыделений и использованием контактных явлений между металлическими спаями и полупроводниковыми ветвями.

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических устройств.

Изобретение относится к термоэлектрическому преобразованию энергии, например, в выпускных системах отработавших газов автомобилей для эффективного использования энергии.

Изобретение относится к области контактных измерений температуры высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний.

Изобретение относится к производству графитированных конструкционных материалов, а конкретно к операции графитации. Прелагаемый новый способ определения температуры керна печи графитации отличается тем, что измеряют температуру в теплоизоляционном слое по нормали к поверхности керна в нескольких, но не менее чем в трех, точках одновременно, причем в той части слоя, температура которой не превышает 1500°C.

Изобретение относится к измерительной технике и может быть использовано при измерении температуры газообразных, жидких и твердых сред. Предложен датчик температуры, включающий в себя чувствительный элемент, выполненный в виде кабельного термоэлектрического преобразователя, и защитный чехол, состоящий из отрезка трубы и пробки.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей.

Изобретение относится к термометрии, а именно к полевому определению температуры грунтов, где требуется получить конкретные данные о температуре мерзлых, промерзающих и протаивающих грунтов.

Изобретение относится к области измерительной техники и может быть использовано для исследования взаимодействия судна или его модели с водной средой, стратифицированной по глубине слоями разной температуры.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при правке абразивных кругов инструментами из сверхтвердых материалов с помощью искусственной термопары, установленной на торцевой поверхности кристалла.

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и клеммную колодку.

Изобретение относится к радиоэлектронике и может быть использовано для измерения температуры и разности температур дистанционным беспроводным способом. Преобразователь содержит генератор, источник питания и чувствительный элемент.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай. Термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары. При этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно. Технический результат - повышение быстродействия устройства при сохранении его механической прочности и устойчивости к газодинамическим нагрузкам от газового потока. 1 ил.
Наверх