Одноступенчатый поршневой компрессор двойного действия

Изобретение относится к компрессорной технике, а именно к компрессорам двойного действия, в частности к газомеханическим устройствам, в которых процесс сжатия осуществляется в два этапа: на первом этапе за счет энергии сжатого газа, на втором этапе за счет энергии механического привода. В цилиндре выполнены окна для сообщения полостей сжатия цилиндра в крайних положениях поршня с межступенчатой промежуточной емкостью высокого давления, а в поршне выполнены сверления с клапанами для перепуска газа из вредного пространства в под/над поршневую полость. Увеличивается степень повышения давления. 3 ил.

 

Изобретение относится к компрессорной технике, а именно к компрессорам двойного действия.

Наиболее близким по технической сути (прототипом) к предлагаемому устройству является одноступенчатый поршневой компрессор двойного действия, содержащий цилиндр с полостями сжатия, расположенными по обе стороны от поршня, в котором выполнены каналы с расположенными в них запорными органами, всасывающие и нагнетательные клапаны [1]. Недостатком прототипа является невысокая степень повышения давления.

Задачей изобретения является увеличение степени повышения давления. Это достигается тем, что в цилиндре выполнены окна для сообщения полостей сжатия цилиндра в крайних положениях поршня с межступенчатой промежуточной емкостью высокого давления, а в поршне выполнены сверления с клапанами для перепуска газа из вредного пространства в под/над поршневую полость.

Предлагаемый одноступенчатый поршневой компрессор двойного действия относится к газомеханическим устройствам, в которых процесс сжатия осуществляется в два этапа: на первом этапе за счет энергии сжатого газа, на втором этапе за счет энергии механического привода [2].

На фиг. 1 схематично изображен предлагаемый одноступенчатый поршневой компрессор двойного действия, на фиг. 2 - индикаторная диаграмма работы компрессора.

Компрессор содержит цилиндр 1 с полостями сжатия 2 и 3, расположенными над и под поршнем 4, соединенными посредством окон с коллектором высокого (конечного) давления 6 и межступенчатой промежуточной емкостью высокого давления 7.

Рассмотрим работу предлагаемого устройства на примере процессов, происходящих в надпоршневой полости 2, которые схематично представлены на индикаторной диаграмме (фиг. 2).

При достижении поршнем 4 верхней мертвой точки (ВМТ) открывается клапан Б и вредное пространство (пространство над поршнем при нахождении поршня в ВМТ) соединяется с подпоршневой полостью и давление в нем уменьшается (процесс 4-5). Далее поршень перемещается вниз и давление в надпоршневой полости уменьшается и становится равным давлению в магистрали всасывания рвс (процесс 5-6), открывается всасывающий клапан С и подпоршневая полость заполняется свежей порцией сжимаемого газа низкого давления (процесс 6-1). При достижении поршнем нижней мертвой точки (НМТ) с небольшим предварением открываются окна 5, через которые газ высокого (конечного) давления рк подается в цилиндр из коллектора высокого (конечного) давления 6 и поджимает находящийся там газ (с давлением рвс) до некоторого промежуточного давления рпр (процесс 1-2).

Промежуточное давление определяется по соотношению

,

где рпр - промежуточное давление;

рк - конечное давление (давление нагнетания);

рвс - давление во всасывающей магистрали;

Vпp - объем промежуточной полости;

Vh - рабочий объем цилиндра (объем, описываемый поршнем при перемещении из ВМТ в НМТ);

a - относительный объем вредного пространства.

После этого поршень 4 начинает перемещаться к ВМТ и происходит процесс (2-3) сжатия газа до давления рк за счет механической энергии привода. При достижении давления рк открывается клапан А и газ поступает в межступенчатую промежуточную емкость высокого давления 7 (процесс 3-4) и далее потребителю.

Общая степень повышения давления определяется соотношением

,

где πгаз - степень повышения давления за счет энергии сжатого газа;

πмех - степень повышения давления за счет энергии привода.

Таким образом, давление нагнетания предложенного компрессора будет в πгаз раз больше, чем у прототипа.

Кроме того, производительность компрессора может быть увеличена за счет снижения давления во вредном пространстве.

Ступень газового сжатия благотворно влияет на температурный режим работы воздушного компрессора, так как при дросселировании газ будет охлаждаться.

К достоинствам одноступенчатого поршневого компрессора двойного действия можно отнести и то, что им можно заменить любой многоступенчатый компрессор.

Определим удельный расход энергии, затрачиваемой на сжатие газа в рассматриваемом компрессоре [2].

Будем считать, что давление газа в промежуточной полости равно давлению нагнетания рн, а объем ее равен Vпр. Процессы сжатия (1-2) и расширения (3-4) газа протекают с одинаковыми показателями политропы nр-nсж=n. Общая степень повышения давления будет . Температуру газа перед сжатием обозначим Т1, при этом λ=λ0. С учетом принятых допущений определим массу газа, поступающего в цилиндр в процессе всасывания (в точке 1 по индикаторной диаграмме на фиг. 2)

Масса газа в цилиндре непосредственно перед сжатием (в точке 2) может быть определена из уравнения состояния

Зная массу газа в промежуточной полости и полости цилиндра, можно определить давление рпр, давление в промежуточной полости и полости цилиндра после их сообщения

где В - относительное промежуточное пространство.

С учетом (3) соотношение (2) примет вид

Обозначим степень предварительного повышения давления - πпр, а степень повышения давления при сжатии - π'к. Тогда можно записать:

Принимая во внимание соотношения (4), (5), (6), работу, затрачиваемую на сжатие газа в компрессоре, запишем в виде

или

Соответственно, удельная работа, затрачиваемая на получение 1 кг выдаваемого потребителю газа с давлением рн, будет определяться выражением

или

В безразмерном виде она запишется следующим образом:

Величины lк и могут быть использованы для сравнительной оценки удельных затрат энергии при получении сжатого газа в одноступенчатом поршневом компрессоре двойного действия и многоступенчатом компрессоре. Положив, что Vпр=0 (В=0), а=0 (С=1), уравнение (8) преобразуем к выражению удельного расхода энергии при политропном сжатии газа:

Анализ выражения (9) позволяет выявить влияние объема промежуточной полости (В) на удельный расход энергии в одноступенчатом поршневом компрессоре двойного действия.

Действительная удельная работа, затраченная на сжатие свежей порции газа в цилиндре, будет меньше работы по (8) на величину работы расширения газа высокого давления, поступающего из межступенчатой промежуточной емкости высокого давления в цилиндр компрессора. Эта работа будет равна работе, затрачиваемой на сжатие свежей порции газа в цилиндре от давления рвс до давления рпр.

Рассмотрим процесс сжатия свежей порции газа в газовой ступени, принципиальная схема которой представлена на фиг. 3 а, б.

В начале процесса полость межступенчатой промежуточной емкости высокого давления рн отделена (разобщена) от полости цилиндра с давлением Рвс поршнем А с фиксатором В (фиг. 3а). Далее поршень освобождается и под действием силы давления расширяющегося газа перемещается в цилиндре до тех пор, пока давления в межступенчатой промежуточной емкости высокого давления и цилиндре не сравняются и станут равными Рпр.

Изменение температуры газа в цилиндре будет незначительным, поэтому процесс сжатия можно считать изотермным.

Работа, совершаемая газом высокого давления при расширении, будет равна работе изотермного сжатия газа в цилиндре, т.е.

С учетом обозначений, принятых выше, запишем

Таким образом, действительная удельная работа, затрачиваемая на сжатие газа в одноступенчатом поршневом компрессоре двойного действия, будет равна

Предлагаемый одноступенчатый поршневой компрессор двойного действия обеспечивает увеличение степени повышения давления. Рассмотренные подходы показали свою результативность и могут быть использованы при создании одноступенчатого поршневого компрессора двойного действия.

Список используемых источников

1. Кабаков А.Н., Стариков В.И., Щерба В.Е. Поршневой компрессор двойного действия. Авторское свидетельство №681211. Бюл. 1979. №31.

2. Дзитоев М.С., Пеньков М.М. и др. Системы газоснабжения и вакуумная техника: учебник. - СПб.: ВКА им. А.Ф. Можайского, 2010. - 530 с.

Одноступенчатый поршневой компрессор двойного действия, содержащий цилиндр с полостями сжатия, расположенными над и под поршнем, всасывающие и нагнетательные клапаны, отличающийся тем, что в цилиндре выполнены окна для сообщения полостей сжатия цилиндра в крайних положениях поршня с межступенчатой промежуточной емкостью высокого давления, а в поршне выполнены сверления с клапанами для перепуска газа из вредного пространства в под/над поршневую полость.



 

Похожие патенты:

Изобретение относится к устройствам для сжатия газообразной среды, в частности к термокомпрессорам, работающим в цикле с регенерацией. Содержит первую ступень (E1) с первой горячей камерой (E11), вторую холодную камеру (Е12), поршневой узел (7), разделяющий первую и вторую камеры внутри основного кожуха, регенеративный теплообменник (9), устанавливающий гидравлическую связь между первой и второй камерами посредством по меньшей мере первой линии (F1) связи, и необязательные третью и четвертую камеры (Е21, Е22), разделенные неподвижным разделителем (61), разделяющим третью и четвертую камеры, связанные второй линией (F2) связи.

Изобретение относится к шатуну и воздушному компрессору, оснащенному таким шатуном. Шатун состоит из большой головки, маленькой головки и соединительной части.

Изобретение относится к поршневым компрессорным установкам для компримирования газа и может использоваться для подготовки углеводородных газов к транспортированию или переработке на объектах газовой и нефтяной промышленности.

Изобретение относится к многоступенчатым поршневым компрессорам, работающим в составе транспортных средств специального назначения. Компрессор содержит как минимум две несмазываемые цилиндропоршневые группы с автономными линейными приводами и блок управления, позволяющий регулировать скорость и ход поршня каждой цилиндропоршневой группы.

Предложены способ и устройство для ротационной установки, например для встречно-последовательного компрессора. Первая секция имеет первый впускной канал, по меньшей мере одно первое рабочее колесо и первый выпускной канал.

В настоящем изобретении предложено устройство двигатель-компрессор и способы, пригодные для обработки кислого газа. Устройство двигатель-компрессор включает первый компрессор; емкость высокого давления; теплообменник, соединенный с емкостью высокого давления; и электродвигатель, заключенный внутри емкости высокого давления; где электродвигатель механически соединен с первым компрессором, и где емкость высокого давления выполнена с возможностью приема по меньшей мере части охлажденного сжатого газа из теплообменника и приведения его в контакт с электродвигателем.

Изобретение относится к поршневому компрессору для сжатия газа. Поршневой компрессор (1) высокого давления для сжатия газа содержит резервуар (4) с камерой (8, 23) резервуара, в которой во время работы поршневого компрессора возвратно-поступательно направляется поршень (3) для сжатия газа в камере резервуара.

Изобретение относится к компрессоростроению и может быть использовано для поршневых машин, использующих избыточное давление газового топлива. В способе получения избыточного давления в ресивере, включающем ресивер с массивными стенками, с теплоизоляцией и с прогревом, рассчитанный на работу при большом давлении газа, в качестве средства воспламенения использован сегмент сферической формы в виде колпака, прикрепленного к ресиверу.

Изобретение относится к области компрессоростроения. Поршневой компрессор содержит по меньшей мере один цилиндр (01) с поршнем (02) и поршневым штоком (03) и расположенную со стороны крышки сторону (04) цилиндра, а также расположенную со стороны кривошипа сторону (05) цилиндра.

Изобретение относится к области машиностроения, в частности к области компрессоростроения, и может найти применение для получения сжатого газа на предприятиях в различных отраслях промышленности.

Изобретение относится к области компрессоростроения и может быть использовано при создании многоступенчатых поршневых компрессоров. Способ работы многоступенчатого компрессора заключается в том, что газ подают в цилиндр первой ступени компрессора, сжимают его до давления, необходимого для его нагнетания из первой ступени, и подают в герметизированный картер. Затем после выравнивания давлений газов в цилиндре первой ступени и картере газ, сжатый в первой ступени компрессора, подают на всасывание в цилиндр второй ступени компрессора, который после сжатия и нагнетания из второй ступени подают в третью ступень. Поршень третьей ступени устанавливают на поршень первой ступени и после сжатия газа в третьей ступени подают потребителю. Повышенное давление в блок-картере в значительной мере или полностью компенсирует силы, действующие на поршни со стороны полостей сжатия. Это дает возможность без превышения номинальной нагрузки на коленчатый вал использовать бескрейцкопфные дифференциальные поршни и, соответственно, объединить две или более ступени в одном ряду. Упрощается устройство компрессора и снижается его себестоимость. 1ил.

Изобретение относится к компрессорной технике, а именно к поршневым компрессорам. Машина содержит цилиндры с размещенными в них поршнями. В головке цилиндров расположены нагнетательные клапаны, выполненные в виде вытеснительных поршней. В межступенчатой емкости установлен холодильник. Емкость сообщена с цилиндрами и ресивером с газом высокого давления. Содержит вспомогательный ресивер с газом рабочего давления, который связан с межступенчатой емкостью посредством трубопровода и запорной арматуры, для наполнения межступенчатой емкости газом рабочего давления перед запуском компрессора. В поршневой машине обеспечивается уменьшение времени выхода на режим. 1 ил.
Наверх