Спектрометр заряженных частиц



Спектрометр заряженных частиц

 


Владельцы патента RU 2617129:

Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет им. М.К.Аммосова" (RU)

Изобретение относится к приборам для дозиметрии и измерения спектров заряженных частиц. Спектрометр заряженных частиц содержит полупроводниковые детекторы, образующие телескоп, с которыми последовательно соединены спектрометрические усилители и аналого-цифровые преобразователи, причем сцинтилляционный детектор снабжен усилителем, при этом для измерения потока и частиц с двух противоположных направлений установлено четное количество полупроводниковых детекторов, при этом крайние детекторы выполнены с толщиной, меньшей толщины средних детекторов, выходы детекторов соединены с входами спектрометрических усилителей, а выходы усилителей – с входами аналого-цифровых преобразователей, выходы аналого-цифровых преобразователей соединены с входами программируемой логической матрицы. Технический результат – увеличение информативности устройства. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к приборам для дозиметрии и измерения спектров заряженных частиц.

Известны спектрометры и спектрометры-дозиметры потоков заряженных частиц с менее широким диапазоном принимаемого излучения. Подобные приборы достаточно чувствительны к низкоэнергетическим заряженным частицам, однако, более энергичные частицы, длина трека которых больше чувствительной области детекторов, в них не останавливаются. Соответственно диапазон частот измерения аналогов по сравнению с диапазоном измерения спектрометра ниже.

Например, спектрометр энергий заряженных частиц (см. SU №970980, МПК G01T 1/36, опубл. 23.05.1983) содержит соединенные последовательно полупроводниковый детектор, импульсный усилитель и амплитудный анализатор, при этом введены детектор электронов с микроканальными пластинами и коллектором, источник ускоряющего напряжения, второй импульсный усилитель, узел временного отбора. Вход микроканальных пластин детектора электронов соединен с источником ускоряющего напряжения, коллектор - с входом второго импульсного усилителя, выход которого и второй выход первого импульсного усилителя - с входами устройства временного отбора, а выход второго узла соединен с входом управления амплитудного анализатора. Подобная схема соединения характерна низким энергетическим порогом чувствительности и ограниченностью энергетического диапазона измеряемых частиц.

Спектрометр-дозиметр (см. RU №2000582, МПК G01T 1/24, G01T 1/16, G01T 1/02, опубл. 07.09.1993), использующий QUOTE -метод регистрации заряженных частиц, состоит из системы из двух QUOTE -детекторов, первый и второй выходы которой соединены с входами первого и второго блоков аналоговых измерений соответственно, первые выходы которых соединены с первыми входами первого и второго аналогово-цифровых преобразователей, снабжен экраном-заслонкой, блоком стробируемых буферных усилителей, выход которого соединен через буферный регистр с общей шиной центрального процессорного устройства, а второй и третий входы подсоединены к выходам первого и второго аналогово-цифровых преобразователей. Однако введение QUOTE -детектора вводит ограничение энергетического диапазона измерения, толщина детектора может быть меньше длины трека более энергичных частиц.

Задачей, на решение которой направлено заявляемое изобретение, является повышение информативности и расширение энергетического диапазона измерения регистрации частиц.

Технический результат, получаемый при осуществлении изобретения, заключается в расширении информативности путем обеспечения возможности измерений потока и частиц с двух противоположных направлений.

Для решения поставленной задачи спектрометр заряженных частиц, содержащий полупроводниковые детекторы, образующие телескоп, с которыми последовательно соединены спектрометрические усилители и аналого-цифровые преобразователи, причем сцинтилляционный детектор снабжен усилителем, отличающийся тем, что с целью расширения информативности путем обеспечения возможности измерений потока и частиц с двух противоположных направлений, в котором установлено четное количество полупроводниковых детекторов, крайние детекторы выполнены с толщиной, меньшей толщины средних детекторов, выходы детекторов соединены с входами спектрометрических усилителей, а выходы усилителей – с входами аналого-цифровых преобразователей, выходы аналого-цифровых преобразователей соединены с входами программируемой логической матрицы. Кроме того, крайние полупроводниковые детекторы выполнены с толщиной, в два раза меньшей толщины средних детекторов.

Сопоставительный анализ признаков заявленного решения с признаками аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Отличительной характеристикой спектрометра является использование QUOTE -метода регистрации заряженных частиц, в котором сигналы, полученные с нескольких полупроводниковых QUOTE -детекторов, сравниваются в логической матрице, что повышает информативность измерения и увеличивает диапазон.

Блок детектирования выполнен в виде четного количества (четыре) полупроводниковых детекторов, образующих телескоп, причем крайние полупроводниковые детекторы в два раза тоньше средних, выходы полупроводниковых детекторов последовательно соединены с входами спектрометрических усилителей, выходы спектрометрических усилителей соединены с входами аналого-цифровых преобразователей и последовательно соединены с входами программируемой логической матрицы.

Заявленное решение иллюстрируется чертежами, где на фиг. 1 представлена блок-схема спектрометра; на фиг. 2 – расчетные значения ионизационных потерь для кремниевых полупроводниковых детекторов.

Спектрометр заряженных частиц имеет полупроводниковые детекторы 1-4, составляющие телескоп, выходы детекторов последовательно соединены с входами спектрометрических усилителей 5-8, выходы усилителей последовательно соединены с входами аналого-цифровых преобразователей 9-12, выходы преобразователей последовательно соединены с входами программируемой логической матрицы 13, контейнер антисовпадительного охранного детектора выполнен из пластмассового сцинтиллятора, находящегося в оптическом контакте с фотокатодом фотоэлектронного умножителя, выход которого через усилитель подключен к программируемой логической матрице 13 (см. фиг. 1).

Спектрометр заряженных частиц работает следующим образом.

Заряженные частицы при взаимодействии с веществом последовательно соединенных с входами спектрометрических усилителей 5-8 полупроводниковых детекторов 1-4 вызывают ионизацию, которая описывается соотношением Бете (см. формулу (1)):

QUOTE (1)

где С - суммарная площадь, занимаемая поперечным сечением электронов, содержащихся в 1 г тормозящей среды;

z - заряд частицы, отнесенный к заряду электрона;

Z - заряд ядра в веществе детектора, отнесенный к заряду электрона;

mc2 - энергия покоя частицы;

QUOTE - безразмерная функция энергии, параметры которой зависят от физических констант среды и тормозящихся частиц;

- толщина материала, выраженная в единицах поверхностной плотности (г/см2), равная произведению толщины детекторов на плотность материала .

Вычисленные значения ионизационных потерь для полупроводниковых детекторов 1-4 показаны на фиг. 2. Толщина детекторов 1-4 равна 0,1. При прохождении заряженной частицы через полупроводниковые детекторы 1-4 выделенная в ней энергия преобразуется в выходной импульс и через спектрометрические усилители 5-8 передается на аналого-цифровые преобразователи 9-12 спектрометра заряженных частиц.

Толщину полупроводниковых детекторов d выбирают исходя из энергетических диапазонов регистрируемых частиц. Поскольку частицы сначала попадают на внешние (крайние) детекторы и должны давать соответствующие сигналы, их толщина должна быть ниже внутренних (средних). Иначе при тех же энергиях частиц из области мягкой области необходимо задействовать и внутренние детекторы, что нецелесообразно. Для удобства выбора диапазонов целесообразно толщину внешних детекторов выбирать кратной толщине внутренних. Например, в два раза тоньше. Приведенные толщины детекторов (0,05 см для внешних и 0,1 см для внутренних) охватывают практический диапазон энергий протонного излучения.

Рассмотрим работу спектрометра заряженных частиц при регистрации потока протонов.

Протоны с энергией от 1 до 8 МэВ полностью поглощаются в полупроводниковых детекторах 1 и 4 (см. фиг. 1, 2, кривая 17), т.е. в этом интервале энергий можно производить спектрометрию потока протонов с двух направлений. Протоны с энергией до 15 МэВ полностью тормозятся в детекторах 1 и 2, а также с противоположного направления в детекторах 3 и 4, что позволяет производить измерения с двух направлений в интервале энергий от 9 до 15 МэВ (см. фиг. 2 - кривые 17 и 18). Протоны с большей энергией, но до 20 МэВ, регистрируются полупроводниковыми детекторами 1-3 с одного направления, а детекторами 2-4 с противоположного направления. Протоны с энергией больше 21,5 МэВ проходят через всю систему детекторов 1-4. Так, например, при энергии протонов 40 МэВ в полупроводниковом детекторе 1 получают сигнал в энергетических единицах 1-1,4 МэВ (см. фиг. 2 – кривая 17), в детекторе 2 - 1,65 МэВ (см. фиг. 2 – кривая 18), в детекторе 3 - 2,9 МэВ (см. фиг. 2 – кривая 19), в детекторе 4 – 3,1 МэВ (см. фиг. 2 – кривая 20). Если протоны с энергией 40 МэВ попадают в систему со стороны детектора 4, получают сигнал: в детекторе 4 - 1,4 МэВ, в детекторе 3 – 1,65 МэВ, в детекторе 2 – 2,9 МэВ, в детекторе 1 – 3,1 МэВ. Таким образом, можно спектрометрировать потоки протонов с энергией больше 21,5 МэВ, а также различать направления прихода частиц. Верхний предел для определения энергии и направления частиц в данном конкретном случае с четырьмя полупроводниковыми детекторами составляет 60 МэВ. Этот предел можно расширить, если использовать более толстые детекторы 2 и 3 или увеличить общее чисто детекторов.

На фоне потока протонов можно произвести спектрометрирование потоков электронов с двух направлений в интервале энергий от 200 кэВ до 7 МэВ. Рассмотрим работу предложенного спектрометра заряженных частиц при регистрации потока электронов.

Кривые 21-24 (см. фиг. 2) соответствуют ионизационным потерям электронов в полупроводниковых детекторах 1-4. Кривая 21 пробега электронов с энергией до 0,58 МэВ характерна для тонких полупроводниковых детекторов 1 и 4, т.е. можно измерять энергию электронов с двух направлений до энергии 0,58 МэВ. Электроны с энергией выше 1,4 МэВ, но до 2,4 МэВ, регистрируются детекторами 1-3 или 2-4 с другого направления. А электроны, обладающие энергией выше 2,9 МэВ, могут проходить через детекторы 1-4. В данном случае можно измерять энергию и определять направление электронов до энергии 7 МэВ.

В целом принцип работы предложенного спектрометра заряженных частиц состоит в следующем.

Сигналы с полупроводниковых детекторов 1-4 через спектрометрические усилители 5-8 подаются в аналого-цифровые преобразователи 9-12, где преобразуются и подаются в программирующую логическую матрицу 13, которая имеет N входов и n выходов. Расчетным путем вычисляют возможные состояния выходных разрядов всех аналого-цифровых преобразователей 9-12 (т.е. состояние входных разрядов программируемой логической матрицы 13 при обоих направлениях попадания частиц и типа частиц (1 и p) при разных энергиях). После этого составляют таблицу входных состояний на входных шинах матрицы, программируют направление прихода частиц (1 бит), тип частицы (в данном случае – 1 бит) и энергию частицы (n = 2 бита). Точность измерений зависит от емкости матрицы и возможности ее наращивания. Пластический сцинтиллятор 14 исключает из анализа те события, при которых в детекторы 1-4 попадают высокоэнергичные проникающие частицы мимо апертуры телескопа.

Использование предложенного спектрометра заряженных частиц позволит:

• расширить энергетический диапазон измерений;

• независимо и одновременно измерять потоки частиц разных интенсивностей с двух противоположных направлений.

Тем самым появляется новая функциональная возможность и увеличивается информативность устройства без увеличения габаритов, веса и энергопотребления.

1. Спектрометр заряженных частиц, содержащий полупроводниковые детекторы, образующие телескоп, с которыми последовательно соединены спектрометрические усилители и аналого-цифровые преобразователи, причем сцинтилляционный детектор снабжен усилителем, отличающийся тем, что в измерении потока и частиц с двух противоположных направлений установлено четное количество полупроводниковых детекторов, при этом крайние детекторы выполнены с толщиной, меньшей толщины средних детекторов, выходы детекторов соединены с входами спектрометрических усилителей, а выходы усилителей – с входами аналого-цифровых преобразователей, выходы аналого-цифровых преобразователей соединены с входами программируемой логической матрицы.

2. Спектрометр по п.1, отличающийся тем, что крайние полупроводниковые детекторы выполнены с толщиной, в два раза меньшей толщины средних детекторов.



 

Похожие патенты:

Изобретение относится к медицинским инструментам, и более конкретно к системам и способам графического планирования и помощи в медицинских процедурах с использованием графического интерфейса инструмента.

Изобретение относится к области измерения параметров ионизирующего излучения. Способ оценки достоверности результатов измерения носимым измерителем мощности дозы на радиоактивно загрязненной местности в период формирования следа радиоактивного облака заключается в том, что определяют факт радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы при ведении радиационной разведки пешим порядком, при этом для выявления факта радиоактивного загрязнения блока детектирования проводят два измерения мощности дозы на высотах 0,1 и 3 метра над радиоактивно загрязненной местностью и сравнивают отношение полученных показаний с контрольным числом, равным 1,7, которое соответствует случаю, когда детекторный блок не загрязнен радиоактивными веществами; в случае наличия загрязненности блока детектирования радиоактивными веществами полученное отношение будет меньше контрольного значения.

Изобретение относится к охранной технике. Техническим результатом является обеспечение визуализации изображения по заданным координатам и времени.

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях.

Изобретение относится к радиационной безопасности. Способ измерения параметров ионизирующего излучения включает этапы, на которых измеряют четырьмя счетчиками Гейгера-Мюллера ионизирующее излучение, при этом регистрация гамма-излучения осуществляется с помощью четырех счетчиков Гейгера-Мюллера СБМ-20, на каждый из которых подано напряжение 400 В от высоковольтного преобразователя, преобразователь напряжения реализует числоимпульсный способ регулирования напряжения без использования обратной связи по высокому напряжению, при прохождении частицы через чувствительный объем СГМ возникает импульс тока, что ведет к просадке напряжения на электродах СГМ, падение напряжения усиливается предварительным усилителем, формируется в положительный электрический импульс и подается на вход микроконтроллера, данный процесс происходит в каждом канале независимо, по наличию импульсов, приходящих по всем каналам, определяется количество подключенных СГМ и выбирается необходимое время счета, подсчитанные за выбранное время счета импульсы корректируются с учетом нагрузочной характеристики СГМ, после чего откорректированное количество импульсов пересчитывается в мощность дозы в мкЗв/час и выводится на экран прибора, при включенном режиме подсчета накопленной дозы, полученное значение мощности дозы умножается на время измерения и сохраняется в ячейке памяти и в дальнейшем суммируется со следующим значением измеренной дозы и так до отключения режима подсчета накопленной дозы, схема контролирует наличие питающего напряжения и в случае его резкого пропадания или уменьшения последнее полученное значение дозы сохраняется в энергонезависимой быстродействующей памяти.

Изобретение относится к области протонной радиографии, в частности к способам формирования и регистрации протонных изображений с помощью магнитной оптики. Способ регистрации протонных изображений, сформированных с помощью магнитооптической системы, включает формирование протонного пучка, который пропускают через объект исследования, и получение цифровых изображений протонного пучка до пропускания его через объект исследования с помощью первой системы регистрации и после пропускания пучка через объект исследования с помощью второй системы регистрации, конвертор которой размещают в плоскости фокусировки магнитооптической системы, настроенной на энергию протонного пучка до прохождения им объекта исследования и обеспечивающей фокусировку протонов из плоскости объекта в плоскость изображения, последующее получение теневого изображения объекта исследования путем приведения полученных изображений пучка к одному ракурсу и попиксельного деления одного изображения на другое, при этом во второй системе регистрации перед конвертором устанавливают, по крайней мере, еще один конвертор с соответствующей регистрирующей аппаратурой и получают, по крайней мере, еще одно цифровое изображение протонного пучка, которое учитывают при получении теневого изображения объекта исследования путем приведения его с изображением пучка, полученного с помощью первой системы регистрации, к одному ракурсу и попиксельного деления одного изображения на другое, при этом расстояние L между конверторами выбирают, исходя из параметров объекта исследования и магнитооптической системы, из следующего соотношения: , где: m22 - соответствующий элемент матрицы перехода М магнитооптической системы, ∂m12/∂p - частная производная по импульсу протона соответствующих элементов матрицы перехода М, Δр - разница по средней величине импульса между протонами, которые прошли через области объекта исследования с различной оптической толщиной.

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений.

Изобретение относится к приборостроению и может быть использовано в высоковольтной импульсной технике для диагностики импульсных источников релятивистских электронных потоков в сильном магнитном поле путем измерения поперечных скоростей релятивистских электронов.

Изобретение относится к технике измерения ионизирующих излучений и предназначено для определения радионуклидного состава и активности упакованных в контейнеры РАО.

Изобретение относится к спектрометрам для обнаружения радионуклидов ксенона. Спектрометр для определения объемной активности радионуклидов ксенона, в котором измеряемая проба представляет собой смесь газов, содержит детектирующую часть, которая выполнена с возможностью детектирования бета-излучения и гамма-излучения и которая содержит измерительную камеру, блок детектирования бета-излучения и блок детектирования гамма-излучения, при этом блок детектирования бета-излучения содержит по меньшей мере два детектора бета-излучения, а блок детектирования гамма-излучения содержит по меньшей мере один детектор гамма-излучения.

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения источников ионизирующего излучения (ИИИ), и предназначается для поиска точечных источников гамма-излучения. Способ определения местоположения точечного источника гамма-излучения на местности заключается в измерении мощности дозы гамма-излучения в процессе полета, при этом измерения осуществляются детектором гамма-излучения с коллиматором в виде круговой щели конической формы, размещенным на базе беспилотного летательного аппарата, в три последовательные стадии: вертикальный подъем аппарата с заданной точки на земле до достижения высоты, на которой срабатывает датчик обнаружения излучения, с последующим проведением геометрического определения участка в форме кольца с центром в точке взлета; второй подъем с любой точки внутри первого кольца с повторением всех операций первой стадии и геометрическим определением точек пересечения обоих колец; подлет на малой высоте к одной из точек, определенных на второй стадии, для точного определения местоположения источника на местности. Технический результат – повышение оперативности поиска точечного источника ионизирующего излучения на большой по площади территории. 5 ил.
Наверх