Способ выращивания легированных нитевидных нанокристаллов кремния

Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, при этом выращивание кристаллов ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4], равное m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m, большего или равного 0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m, равное 0. Изобретение обеспечивает возможность получения легированных нитевидных нанокристаллов Si, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками. 5 пр.

 

Изобретение относится к области получения полупроводниковых материалов, предназначено для выращивания на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК) легированных нитевидных нанокристаллов (ННК) кремния, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками.

В настоящее время известен способ выращивания ННК Si, легированных в процессе ПЖК-роста атомами металла-катализатора, находящегося в виде жидкофазной капли на вершине кристалла [Wagner R S, Ellis WC Vapour-Liquid-Solid Mechanism of Single Crystal Growth // Appl. Phys. Lett., 1964. V. 4. N. 5. P. 89-90]. Поскольку катализаторами роста ННК Si являются металлы (Au, Cu, Ni, Pt, Pd и др.), создающие глубокие донорные уровни в энергетическом спектре запрещенной зоны Si, то выращенные данным способом кристаллы обладают низкой электрической проводимостью n-типа, а изготавливаемые к ним выводные электрические контакты металл-кремний обладают высоким переходным сопротивлением и нелинейными вольт-амперными характеристиками, что не позволяет использовать такие ННК для практических применений. Другим недостатком способа является невозможность создания областей ННК с разным уровнем легирования, так как примеси с глубокими энергетическими уровнями обладают высокими коэффициентами диффузии в Si и созданные области легирования легко размываются в течение небольшого времени.

Известен способ выращивания легированных ННК Si с использованием газообразного примесного соединения РН3 (гидрида фосфора) [Wang Y., Lew K. - K., Но Т. - Т. et al. Use of Phosphine as an n-Type Dopant Sourse for Vapor-Liquid-Solid Growth of Silicon Nanowires // Nano Lett, 2005. V. 5. No. 11. PP. 2139-2143], в основе которого лежит процесс введения в ННК легирующей мелкой донорной примеси из газовой фазы во время ПЖК-роста за счет применения отдельного потока с газообразным примесным соединением, который перед зоной роста кристалла смешивается с основным потоком реагирующих газов (SiH4 и H2) и создает постоянное отношение компонентов PH3/SiH4 в газовой фазе. Недостатками данного способа являются необходимость снижения концентрации легирующего компонента в парогазовой смеси до очень малых количеств и применения в этой связи систем дополнительного двух-трехступенчатого разбавления РН3 водородом, необходимость точного измерения сверхмалых количеств газообразных веществ, невозможность обеспечить различные уровни легирования ННК на различных стадиях роста, а также высокая токсичность РН3, разложение его при хранении и повышенные требования к герметичности газовых магистралей и реакционной камеры, что затрудняет управление процессом легирования кристаллов.

Наиболее близким техническим решением является способ получения легированных ННК Si химическим осаждением из паров SiCl4 во время ПЖК-роста с применением жидкостного источника легирующей примеси [Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977, 304 с.]. В основе способа лежит легирование кристаллов фосфором путем введения в определенной пропорции в чистый жидкий SiCl4 галогенида фосфора РСl3, который в рабочем состоянии также является жидкостью. Недостатком данного способа является невозможность обеспечить различный уровень легирования ННК на разных стадиях роста (начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации)), поскольку в нем фиксируется заданное отношение концентрации примеси и основы как в жидкой, так и в газовой фазах независимо от расхода газа-носителя через испаритель, что не дает возможности формирования высокоомных и электрически вырожденных областей ННК на основном, начальном и конечном участках кристалла.

Изобретение направлено на управляемое получение легированных ННК кремния, имеющих повышенный уровень легирования донорной примесью на начальном и конечном участках кристалла (структуры n--n-n-).

Это достигается тем, что при осаждении кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, выращивание кристаллов на начальной, основной и конечной стадиях роста ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0. В результате центральная часть ННК легируется до n-типа проводимости, а периферийные участки ННК (начальный и конечный) приобретают состояние вырождения и n--тип проводимости. Получается структура с тремя областями проводимости n--n-n-, причем n-область ННК может использоваться как резисторный функциональный элемент, а n--области как площадки для создания омических контактов к данному элементу.

Способ выращивания легированных ННК кремния, имеющих повышенный уровень легирования на начальной и конечной участках кристалла, осуществляется следующим образом. На поверхность ростовой подложки наносят частицы катализатора с последующим помещением ее в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и газофазное легирующее соединение РСl3, поступающие из жидкостного источника. Затем осуществляют выращивание кристаллов на начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации) стадиях. Выращивание ведут последовательно из двух жидкостных источников. Количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0.

Легирование ННК в процессе роста из жидкостного источника определяется тем, что позволяет в широких пределах изменять их удельную проводимость. Количественное значение величины m≥0,01 определяется тем, что при данном уровне легирования на начальной и конечной стадиях роста ННК достигается состояние вырождения (n--проводимость) с концентрацией примеси более 1019 см-3. Количественное значение молярного отношения m=0 на основной стадии роста определяется тем, что при подаче чистого SiCl4, ([РCl3]=0) легирование ННК осуществляется за счет растворения металла катализатора роста кристаллов и обеспечивается наиболее высокое электрическое сопротивление основной области материала ННК (10-3 Ом⋅см и более), являющейся рабочей в различных функциональных устройствах на основе ННК. Использование легирующего соединения PCl3 определяется тем, что фосфор, входящий в состав PCl3, имеет малую подвижность в кремнии (коэффициент диффузии не превышает 10-7 см2/с), что позволяет создавать участки ННК с различным уровнем легирования (n--n-n-), и является мелкой донорной примесью в кремнии, обеспечивающей электронный тип (n--тип) проводимости, поскольку тип проводимости ННК, формирующихся в отсутствие легирующего соединения РСl3 на основной стадии роста, также электронный.

Использование предлагаемого способа позволяет снизить переходные электрические сопротивления при создании электрических контактов к ННК до 0,01 величины от сопротивления основной части кристалла и тем самым существенно облегчить решение проблемы создания омических (с линейными вольт-амперными характеристиками) контактов к ННК и создания наноэлектронных устройств на их базе (чувствительных элементов многофункциональных датчиков, термоэлектрических наноустройств, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.). При этом в процессе выращивания легированием фиксируются размеры основной рабочей области кристалла, что важно для повторяемости характеристик наноустройств при их серийном изготовлении, а контактные выводы ННК по механической прочности приближаются к прочности используемого для вывода металлического проводника.

Примеры осуществления способа

Пример 1

На поверхность исходной пластины кремния КЭФ (111) на электронно-лучевой установке ВАК-501 напылялась тонкая пленка Ni толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°С в потоке водорода осуществлялось сплавление Ni с Si и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния SiCl4 и треххлористый фосфор PCl3 из первого источника при молярном соотношении [РСl3]/[SiCl4]=0,01 и выращивали легированные фосфором ННК Si. Время выращивания ННК на начальной стадии составляло 2 минуты. Затем прекращали подачу питающего материала из первого источника и осуществляли подачу SiCl4 из второго источника при m=0 и молярном соотношении [SiCl4]/[H2]=0,008 и выращивали ННК Si на основной стадии в течение 10 минут. Затем прекращали подачу питающего материала из второго источника и возобновляли подачу парогазовой смеси из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,01. Время выращивания ННК на конечной стадии составляло 2 минуты. В результате были получены кристаллы с тремя областями легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=5,5⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=6,8⋅10-4 Ом⋅м, что соответствует концентрации фосфора в кремнии ~1017 см-3 и ~1019 см-3 соответственно.

Пример 2

Выращивание ННК проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=1,8⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=3,2⋅10-4 Ом⋅м.

Пример 3

Выращивание ННК проводилось аналогично примеру 1, но толщина тонкой пленки никеля составляла 20 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=3,28⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=2,81⋅10-4 Ом⋅м.

Пример 4

Выполнение изобретения осуществляли аналогично примеру 1, но в газовую фазу подавали SiCl4 и PCl3 из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,02. Удельное электрическое сопротивление n-области ННК составило ρ=8,3⋅10-3 Ом⋅м, а n--области - ρ=9,1⋅10-5 Ом⋅м.

Пример 5

Выращивание ННК проводилось аналогично примеру 1, но время выращивания на основной стадии роста составляло 20 минут. Полученные результаты соответствовали результатам примера 1.

Способ выращивания легированных нитевидных нанокристаллов кремния, включающий подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающих из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, отличающийся тем, что выращивание кристаллов ведут последовательно из двух жидкостных источников, при этом в первом источнике на начальной стадии роста количественное значение молярного отношения [PCl3]/[SiCl4]=m выбирают из интервала m≥0,01, а во втором источнике на основной стадии роста количественное значение молярного отношения [PCl3]/[SiCl4]=m устанавливают как m=0.



 

Похожие патенты:

Изобретение относится к способу управления концентрацией и однородностью распределения легирующей примеси в синтетическом CVD-алмазном материале, используемом в электронных устройствах и датчиках.
Изобретение относится к области неорганической химии, а именно к получению синтетических алмазов, легированных бором, которые могут найти применение в электронной промышленности для изготовления полупроводниковых устройств.
Изобретение относится к композиционной поверхностной системе на материалах, содержащих натуральные и синтетические алмазы, обладающей высокой адгезионной способностью к связке в алмазных инструментах или изделиях, износостойкостью и химстойкостью.

Изобретение относится к технологическим приемам получения искусственных кристаллов алмаза из углеродсодержащего сырья, при высокой температуре и в атмосфере сжатого газа, относительно низкого давления.

Изобретение относится к способам синтеза монокристаллов алмаза (МКА) из низкомолекулярных углеродсодержащих соединений при высоких температурах в гетерогенных селикатных средах.

Изобретение относится к полупроводниковой технике и может быть использовано при создании на основе легированных щелочными металлами полупроводниковых соединений детекторов ядерных излучений, светоизлучающих структур, других полупроводниковых устройств и приборов.

Изобретение относится к технологии получения соединений внедрения в графит (СВГ), в частности к получению квазимонокристаллов СВГ интеркалята: интергалоидов, хлоридов металла или галогенов акцепторного типа низких ступеней с высокой электропроводностью и различными периодами идентичности.

Изобретение относится к технологии полупроводников-сложного состава, в частности к получению гетерострук- , тур, оба компонента которых принадлежат к соединениям класса А В С .

Изобретение относится к технологии получения нитевидных монокристаллов сульфобромидов трехвалентных металлов SbSBr, BiSBr, CrSBr, которые могут быть использованы в качестве легирующих добавок при получении композитных пьезоэлектрических материалов с заданными свойствами в гидроакустических преобразователях и преобразователях электромагнитной энергии в механическую.

Изобретение относится к способу получения медьсодержащих нанокатализаторов с развитой поверхностью, который заключается в том, что сначала из раствора электролита на металлический носитель методом электроосаждения наносят медь, затем носитель с нанесенным активным металлом подвергают термообработке.

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в производстве керамики.

Изобретение относится к области металлургии, в частности к выращиванию волокон из расплава. Способ получения монокристаллических волокон из тугоплавких материалов включает размещение в вакуумной камере питателя исходного материала в виде прутка, подачу лазерного излучения на поверхность исходного материала и вытягивание исходного материала с образованием волокна, при этом при подаче лазерного излучения на поверхность исходного материала лазерный луч сканируют в двух взаимно перпендикулярных плоскостях с частотами f1=f2, равными 200÷300 Гц, с амплитудой A, равной 1,5-5 B, где B - наибольший размер держателя питателя исходного материала.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора и помещением подготовленной пластины в ростовую печь с последующим выращиванием нитевидных нанокристаллов, при этом на коллоидный раствор воздействуют ультразвуком, причем мощность ультразвукового генератора задают в пределах от 30 до 55 Вт, а температуру раствора поддерживают в интервале от 273 K до 370 K.

Изобретение относится к производству профилированных высокотемпературных волокон тугоплавких оксидов, гранатов, перовскитов. Устройство содержит ростовую камеру 1 с установленными в ней тиглем 2 для расплава с формообразователем 3, нагреватель 4 тигля 2, экраны 5, затравкодержатель 6, средство 7 его перемещения, направляющий элемент 8, расположенный на расстоянии над формообразователем 3, при этом направляющий элемент 8 имеет два или более свободно покоящихся сапфировых стержня 9, концы которых лежат в нижних точках выемок в подставках 10 из тугоплавкого металла, расположенных параллельно друг другу и скрепленных с помощью шпилек и гаек, при этом растущее волокно 11 расположено между сапфировыми стержнями 9 с возможностью соприкосновения с ними.
Изобретение относится к технологии получения полупроводниковых материалов и предназначено для управляемого выращивания нитевидных кристаллов полупроводников. Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением подготовленной пластины в ростовую печь, нагревом и созданием в пластине продольного температурного градиента 10-100°C/см, далее осуществляют осаждение кристаллизуемого вещества из паровой фазы по схеме пар→капельная жидкость→кристалл, молярное соотношение компонентов газовой фазы к водороду устанавливают в интервале 0,005-0,015, а перепад температуры по диаметру капли катализатора обеспечивают в диапазоне 0,15-0,4°C.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.

Изобретение относится к области полупроводникового материаловедения и может быть использовано для получения отдельных кристаллов и массивов оксида цинка для применения в качестве активных элементов, материала для фотокаталитической очистки сред, пьезоэлектрических датчиков, а также для фундаментальных физических исследований кинетики роста кристаллов.

Изобретение относится к области полупроводникового материаловедения и может быть использовано для получения отдельных кристаллов и массивов оксида цинка для применения в качестве активных элементов, материала для фотокаталитической очистки сред, пьезоэлектрических датчиков, а также для фундаментальных исследований кинетики роста кристаллов.

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования. Способ рафинирования технического кремния осуществляют методом направленной кристаллизации, при этом расплав кремния охлаждают до 1420°С, погружают в него на 3-30 с металлические кристаллизаторы с начальной температурой примерно 150-200°С, выделяют на их поверхностях примеси металлов в виде интерметаллических соединений и твердых растворов с кремнием, после чего кристаллизаторы вместе с примесями удаляют из расплава и перемещают в перегретый флюс для стекания с них кремния, обогащенного примесями.
Наверх