Способ холодной прокатки металлических профилей

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления металлических профилей с повышенными прочностными свойствами. Продольную прокатку металла производят в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации. Повышение прочностных свойств изготавливаемых металлических профилей за счет создания в металле фрагментированной структуры с высокой плотностью дислокаций обеспечивается за счет того, что прокатку осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra и логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, при этом окружные скорости валков регламентированы математической зависимостью. Осуществление заявляемого способа позволяет создать сложную схему напряженно-деформированного состояния, включающую одновременно высокие деформации всестороннего сжатия и сдвига. 6 ил., 2 табл.

 

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления металлических профилей с повышенными прочностными свойствами.

Известен способ, включающий деформацию заготовки путем сочетания трехвалковой винтовой прокатки со скручиванием и продольной сортовой прокатки в калибрах с величиной логарифмической степени деформации за проход не менее 0,5 (см. патент РФ №2389568, В21В 1/00, C22F 1/18).

Недостатком известного способа являются низкие прочностные свойства металлического профиля из-за формирования в нем недостаточно фрагментированной структуры ввиду возникновения при прокатке неблагоприятной схемы напряженного деформированного состояния. Кроме того, осевые растягивающие напряжения в очаге деформации при трехвалковой винтовой прокатке приводят к появлению внутренних микродефектов в заготовках из высокопрочных металлов и сплавов, имеющих крайне низкую технологическую пластичность при действии напряжений растяжения.

Известен также способ получения профилей из легированных металлов и сплавов, включающий деформацию заготовки трехвалковой винтовой прокаткой со скручиванием в чашевидных валках с логарифмической степенью деформации скручивания, составляющей 0,10-0,65 от ее суммы с логарифмическим коэффициентом вытяжки, и дополнительной деформацией редуцирования продольной прокаткой в калибрах с логарифмическим коэффициентом вытяжки, составляющим 0,3-0,8 от ее суммы с логарифмической степенью деформации скручивания при винтовой прокатке (см. патент РФ №2038175, В21В 1/02, В21В 19/00).

Недостатком известного способа является отсутствие в центральных слоях деформируемой заготовки сдвиговых деформаций, способствующих получению фрагментированной структуры металла, что приводит к снижению прочностных свойств готового профиля. Кроме того, в осевой зоне заготовки создается неблагоприятная схема напряженно-деформированного состояния металла, включающая растягивающие напряжения, приводящие к появлению внутренних микродефектов в виде осевых трещин.

Наиболее близким по технической сущности является способ холодной прокатки металлических профилей, включающий продольную прокатку металла в клети с двумя трехвалковыми калибрами, максимально сближенными между собой (см. Ткаченко А.П., Еремин А.В., Горкин Н.А., Бирюков М.А. Клети кассетного типа со сдвоенными регулируемыми трехвалковыми калибрами для беспроводковой прокатки сортовых профилей // Моделирование и развитие процессов обработки металлов давлением: междунар. сб. науч. тр. / под ред. В.М. Салганика. Магнитогорск: Изд-во Магнитогорск, гос. техн. ун-та им. Г.И. Носова, 2012. С. 237-244).

Недостатком известного способа является низкий уровень сдвиговых деформаций по сечению профиля, что не обеспечивает получение фрагментированной структуры металла с высокой плотностью дислокаций и, соответственно, не позволяет обеспечить повышение прочностных свойств готового профиля.

Задача, решаемая изобретением, заключается в повышении прочностных свойств изготавливаемых металлических профилей за счет создания в металле фрагментированной структуры с высокой плотностью дислокаций.

Технический результат, обеспечивающий решение задачи, заключается в создании сложной схемы напряженно-деформированного состояния металла, включающей одновременно высокие деформации всестороннего сжатия и сдвига, равномерно распределенные по толщине обрабатываемого металла.

Поставленная задача решается тем, что в способе, включающем продольную прокатку металла в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации, согласно изобретению, продольную прокатку металла осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra и логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, при этом окружные скорости валков задают из условия:

где V1, V2, V3 - окружные скорости валков, образующих первый калибр, м/с;

V4, V5, V6 - окружные скорости валков, образующих второй калибр, м/с;

S0 - площадь поперечного сечения заготовки до прокатки в первом калибре, мм;

S1 - площадь поперечного сечения профиля после прокатки в первом калибре, мм;

S2 - площадь поперечного сечения профиля после прокатки во втором калибре, мм.

Из способа производства холоднокатаной полосы известно выполнение рабочих валков с шероховатостью 6,0-12,0 мкм Ra для создания условий высокого контактного трения (см. патент РФ №2542212, В21В 1/28).

В заявляемом способе шероховатость валков также, как и в известном, предназначена для повышения касательных сил трения, а, следовательно, для создания сдвиговых деформаций по толщине заготовки.

Известен способ холодной прокатки металлов и сплавов в многовалковых калибрах с логарифмическим коэффициентом вытяжки за проход 0,3-0,5. Это обеспечивает повышение прочностных свойств за счет дополнительного наклепа металла в процессе пластической деформации (см. М.Г. Поляков, Б.А. Никифоров, Г.С. Гун. Деформация металла в многовалковых калибрах. М.: Металлургия, 1979. С. 87-89).

В заявляемом способе осуществление процесса продольной прокатки металла с логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4 так же как и в известном способе, предназначено для дополнительного наклепа металла в процессе пластической деформации.

Известен способ деформации металла в четырехвалковом калибре, согласно которому соотношение скоростей валков равно вытяжке полосы. Он предназначен для снижения рабочих усилий при деформации металла в четырехвалковом калибре (см. авт. св. СССР №261344, В21В 1/00).

В заявляемом способе соотношение скоростей валков, равное коэффициенту вытяжки так же, как и в известном способе, предназначено для снижения рабочих усилий при деформации металла.

Известен также способ асимметричной прокатки металла в многовалковом калибре, образованном, по меньшей мере, тремя валками, включающий прокатку с рассогласованием скоростей валков. Согласно известному способу окружные скорости v1…vn всех валков в калибре устанавливают с их увеличением по направлению движения часовой стрелки в соответствии с соотношением: v1<v2<…<vn. Способ предназначен для более полной проработки металла за счет дополнительных сдвиговых деформаций (см. патент РФ №2528601, В21В 1/00).

В заявляемом способе рассогласование скоростей валков так же, как и в известном способе, предназначено для создания сдвиговых деформаций по толщине заготовки.

Однако наравне с вышеуказанными известными техническими свойствами заявляемая совокупность отличительных признаков, указанная в формуле изобретения, создает новый технический результат, заключающийся в создании сложной схемы напряженно-деформированного состояния, включающей одновременно высокие деформации всестороннего сжатия и сдвига, равномерно распределенные по толщине обрабатываемого металла за счет противоположно направленных сил контактного трения, действующих в двух близкорасположенных очагах деформации. Это позволяет получить фрагментированную структуру металла с высокой плотностью дислокаций и, следовательно, повысить прочностные свойства изготавливаемого профиля.

На основании вышесказанного можно сделать вывод, что заявляемый способ прокатки металлических профилей не следует явным образом из известного уровня техники и, следовательно, соответствует условию патентоспособности «изобретательский уровень».

Сущность заявляемого способа поясняется чертежами, где:

на фиг. 1 изображена схема продольной прокатки металла в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации;

на фиг. 2 - то же, в аксонометрии;

на фиг. 3 - схематично изображена геометрия деформируемого металла в процессе прокатки, в аксонометрии;

на фиг. 4 - вид А на фиг. 3;

на фиг. 5 - вид Б на фиг. 3;

на фиг. 6 - схематично изображен наклон слоев металла в процессе продольной прокатки, в аксонометрии.

Способ прокатки металлических профилей осуществляют следующим образом.

В клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации, в приводных валках 1-6 (фиг. 1, 2), имеющих одинаковую шероховатость 3,0-9,0 мкм Ra осуществляют продольную прокатку круглой заготовки 7 (фиг. 2) для получения, например, шестигранного металлического профиля 8 (фиг. 2). При этом прокатку металла осуществляют с логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, а окружные скорости валков 1-6 задают из условия: где V1, V2, V3 - окружные скорости валков, образующих первый калибр, м/с (фиг. 2); V4, V5, V6 - окружные скорости валков, образующих второй калибр, м/с (фиг. 2); S0 -площадь поперечного сечения заготовки до прокатки в первом калибре, мм2 (фиг. 3); S1 - площадь поперечного сечения профиля после прокатки в первом калибре, мм2 (фиг. 3); S2 - площадь поперечного сечения профиля после прокатки во втором калибре, мм2 (фиг. 3).

В первом трехвалковом калибре рабочие валки 1, 2, 3 соприкасаются с деформируемым металлом в зонах контакта 9, 10, 12 (фиг. 4, 5), образующих первый очаг деформации. Во втором трехвалковом калибре рабочие валки 4, 5, 6 соприкасаются с деформируемым металлом в зонах контакта 11, 13, 14 (фиг. 4, 5), образующих второй очаг деформации.

При продольной прокатке с заявляемыми режимами во всех точках зон контакта 9, 10, 11 (фиг. 4) металла с валками деформируемая заготовка имеет меньшую скорость, чем окружная скорость валков 2, 3 и 6, соответственно, т.е. зоны контакта 9, 10, 11 являются зонами отставания, в которых касательные силы трения τ2, τ3, τ6 (фиг. 4) направлены по ходу движения профиля 8 (фиг. 2). В свою очередь, во всех точках зон контакта 12, 13, 14 (фиг. 5) деформируемый металл имеет большую скорость, чем окружная скорость валков 1, 4, 5, соответственно, т.е. зоны контакта 12, 13, 14 являются зонами опережения, в которых касательные силы трения τ1, τ4, τ5 (фиг. 5) направлены против движения профиля 8 (фиг. 2).

Противоположно направленные в первом и втором очагах деформации касательные силы трения τ2, τ3, τ6 и τ4, τ5, расположенные на расстоянии L друг от друга, позволяют создать интенсивную и равномерную по сечению профиля сдвиговую деформацию. При этом интенсивность сдвиговой деформации металла характеризуется величиной угла наклона γ1 и γ2 (фиг. 6) слоев металла 15 и 16 относительно поперечных сечений профиля 17 и 18 (фиг. 6). Чем больше эти углы, тем больше проработка металла по сечению. При холодной прокатке профиля по заявляемому способу угол наклона γ1 и γ2 слоев металла составляет не менее 45 градусов. Это обеспечивает создание в профиле фрагментированной структуры металла с высокой плотностью дислокаций, что значительно повышает прочностные свойства изготавливаемого профиля.

Для создания по сечению профиля интенсивной сдвиговой деформации, обеспечивающей получение фрагментированной структуры металла с высокой плотностью дислокаций, продольную прокатку с заявляемыми окружными скоростями валков необходимо осуществлять в условиях высокого контактного трения. Для этого продольную прокатку согласно заявляемому способу осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra.

Осуществлять продольную прокатку в валках с шероховатостью менее 3,0 мкм Ra, нецелесообразно, так как возникающие при этом противоположно направленные силы контактного трения будут недостаточны для создания равномерной сдвиговой деформации по сечению профиля, в результате чего структура металла будет разнозернистой с наличием крупного зерна, а прочностные свойства профиля, соответственно, низкими.

Осуществлять продольную прокатку профиля в валках с шероховатостью более 9,0 мкм Ra также нецелесообразно, так как противоположно направленные силы контактного трения будут слишком большими. Это приведет к значительному росту энергосиловых параметров процесса прокатки, а также к появлению поверхностных дефектов, например, царапин.

В проведенных исследованиях установлено, что если логарифмический коэффициент вытяжки за проход в первом или втором калибрах будет меньше, чем 0,4, то уровень сдвиговых деформаций за проход является недостаточным для получения фрагментированной структуры металла с высокой плотностью дислокаций, что приводит к снижению прочностных свойств готового профиля.

Уровень сдвиговых деформаций существенным образом возрастает в случае одновременного приложения к очагу высоких деформаций сжатия, поэтому прокатку проводят с логарифмическим коэффициентом вытяжки за проход не менее 0,4. Это обеспечивает получение фрагментированной структуры, равномерно распределенной по всему сечению изготавливаемого металлического профиля.

Логарифмический коэффициент вытяжки за проход в первом и втором калибрах определяется по формулам:

где: lnμ1 - логарифмический коэффициент вытяжки за проход в первом калибре;

lnμ2 - логарифмический коэффициент вытяжки за проход во втором калибре;

S0 - площадь поперечного сечения заготовки до прокатки в первом калибре, мм2 (фиг. 3);

S1 - площадь поперечного сечения заготовки после прокатки в первом калибре (фиг. 3);

S2 - площадь поперечного сечения заготовки после прокатки во втором калибре, мм (фиг. 3).

В проведенных исследованиях также установлено, что если V2≠V3≠V4≠V5, то во всех зонах контакта 9-14 (фиг. 4, 5) происходит снижение касательных сил трения τ16, что приводит к уменьшению деформации сдвига и, соответственно, снижению плотности дислокаций и прочностных свойств готового профиля.

Если то в зонах контакта 9, 10, 13 и 14 (фиг. 4, 5) происходит снижение касательных сил трения τ25, что приводит к уменьшению деформации сдвига и, соответственно, снижению плотности дислокаций и прочностных свойств готового профиля.

Если то в зонах контакта 9, 10, 13, 14 касательные силы трения τ25 значительно возрастают, но не приводят к увеличению сдвиговых деформаций в очагах, при этом значительно возрастает расход энергии привода рабочих валков, а также образуются дефекты на поверхности деформируемого профиля, например, царапины.

Если то в зоне контакта 11 происходит снижение касательных сил трения τ6, что приводит к уменьшению деформации сдвига и, соответственно, снижению плотности дислокаций и прочностных свойств готового профиля.

Если то в зоне контакта 11 касательные силы трения τ6 значительно возрастают, но не приводят к увеличению сдвиговых деформаций в очаге, при этом значительно возрастает расход энергии привода рабочих валков, а также образуются дефекты на поверхности деформируемого профиля.

Для обоснования преимуществ заявляемого способа продольной прокатки металлических профилей по сравнению с прототипом были проведены 12 экспериментов, из них: эксперименты №1-3 с заявляемыми режимами, эксперименты №4-11 с режимами, выходящими за заявляемые пределы, и эксперимент №12 - по прототипу.

Шестигранный профиль из стали марки 20 получали путем прокатки в клети с двумя трехвалковыми калибрами, сближенными между собой на расстояние L=70 мм. В качестве исходной использовали заготовку круглого поперечного сечения диаметром 8,0 мм. Прокатку проводили в валках радиусом 140 мм по схеме: исходный круг - треугольник - шестигранник. Режимы обработки приведены в таблице 1. Результаты испытаний приведены в таблице 2.

Результаты испытаний показали, что шестигранный металлический профиль, полученный по заявляемому способу (эксперимент №1-3), при равных пластических свойствах (относительное удлинение металла шестигранного профиля составило 5,5-6,0%) имеет прочностные свойства (предел текучести и временное сопротивление разрыву) в 1,3-1,4 раза выше, чем у прототипа (эксперимент №12).

Производить металлический профиль по режимам, выходящим за заявленные пределы, нецелесообразно, так как прочностные свойства профиля остаются низкими (эксперимент №4, 6-10), или сталь теряет ресурс пластичности и в ней образуются трещины и разрывы (эксперимент №5, №11).

На основании вышеизложенного можно сделать вывод, что при заявляемом способе продольной прокатки возникает благоприятная схема напряженно-деформированного напряжения по сечению металлического профиля, что обеспечивает получение фрагментированной структуры с высокой плотностью дислокаций, а следовательно, повышает прочностные свойства.

Способ холодной прокатки металлических профилей, включающий продольную прокатку металла в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации, отличающийся тем, что продольную прокатку металла осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra и логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, при этом окружные скорости валков задают из условий:

и

,

где: V1, V2, V3 - окружные скорости валков, образующих первый калибр, м/с;

V4, V5, V6 - окружные скорости валков, образующих второй калибр, м/с;

S0 - площадь поперечного сечения заготовки до прокатки в первом калибре, мм2;

S1 - площадь поперечного сечения профиля после прокатки в первом калибре, мм2;

S2 - площадь поперечного сечения профиля после прокатки во втором калибре, мм2.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких полос и листов из алюминиевых сплавов. Способ включает прокатку тонкой полосы из алюминиевых сплавов в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%.

Изобретение относится к области прокатки, в частности холодной прокатки металлической полосы (2). Прокатный стан содержит по меньшей мере одну клеть (1) холодной прокатки, расположенный перед клетью (1) холодной прокатки разматыватель (3), при этом между разматывателем (3) и клетью (1) холодной прокатки промежуточно расположен блок (10), который состоит по меньшей мере из трех приводимых во вращение вокруг соответствующей оси (6А, 7А, 8А) вращения роликов (6, 7, 8), при этом предусмотрена возможность перестановки каждого из этих роликов (6, 7, 8) по отдельности или совместно в направлении соответствующей оси (6А, 7А, 8А) вращения или в направлении поперек оси (6А, 7А, 8А) вращения с помощью приводного и регулировочного устройства (11).

Изобретение относится к технологии дрессировки отожженных стальных полос на одноклетевом дрессировочном стане с использованием моталки и разматывателя. Способ включает прокатку с относительными обжатиями 0,5-2% с приложением заднего и переднего натяжений.

Изобретение относится к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты. Повышение механических свойств, их стабильности и однородности по длине полосы обеспечивается за счет того, что способ включает горячую прокатку полосы из стали, имеющей регламентированный состав, ее смотку, травление, холодную прокатку, термообработку, согласно которому температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку ведут с суммарным относительным обжатием не менее 90%, температуру конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, холодную прокатку ведут с суммарным относительным обжатием не менее 62%.

Изобретение относится к области прокатного производства металлической полосы. Снижение продольной и поперечной разнотолщинности полосы обеспечивается за счет того, что в способе обработки металлической полосы пластической деформацией, включающем прокатку с охватом передним концом полосы ведущего валка и охватом задним концом полосы ведомого валка с углом охвата в пределах π≤φ1 и φ0 < 2π радиан, соответственно, с рассогласованием окружных скоростей валков и обеспечением снижения натяжения концов полосы, снижают силы переднего и заднего натяжений на свободных концах полосы путем подачи смазочно-охлаждающей жидкости в зазор между ведущим и ведомым валками и полосой на входе полосы в валки.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления полосы с прочностными свойствами в 1,2-1,4 раза выше, чем у прототипа.

Изобретение относится к прокатному производству и может быть использовано при получении холоднокатаных листов толщиной 0,4-1,8 мм из низкоуглеродистой стали марки 08ЮТР для получения изделий методом глубокой вытяжки.

Изобретение относится к прокатному производству и может быть использовано при получении бескремнистой листовой изотропной электротехнической стали толщиной 0,2-1,8 мм.
Изобретение относится к прокатному производству и может быть использовано на непрерывных станах для холодной прокатки полос и лент из высокопрочных сталей и сплавов.

Изобретение относится к прокатному производству и может быть использовано на многоклетевых непрерывных станах при холодной прокатке полосы из стали или сплавов цветных металлов из горячекатаного подката.

Изобретение относится к области металлургии. Для уменьшении шероховатости поверхности полосы, что приводит к уменьшению удельных магнитных потерь на 10%, способ производства полосы из электротехнической стали включает выплавку и разливку стали, горячую прокатку, две холодные прокатки полосы в рабочих валках клети прокатного стана, обезуглероживающий отжиг, нанесение термостойкого покрытия, высокотемпературный отжиг и выпрямляющий отжиг полосы с нанесением электроизоляционного покрытия, при этом после окончательной холодной прокатки осуществляют обжатие полосы со степенью не более 10% для уменьшения шероховатости ее поверхности путем протяжки холоднокатаной полосы через рабочие валки стана при отключенном приводе. Предложенный способ очень технологичен, так как обжатие можно провести путем протяжки полосы на стане для холодной прокатки при отключенном приводе рабочих валков с помощью моталок, без привлечения дополнительного оборудования. Операция обжатия обеспечивает весьма гладкую поверхность и необходимую планшетность полосы электротехнической стали. 1 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов и полос из алюминиевых сплавов. Способ включает холодную прокатку полосы в двух валках при рассогласовании их окружных скоростей до суммарной степени деформации 75-95% с минимальной единичной степенью деформации 50%. Повышение прочностных свойств изделий за счет создания фрагментированной структуры металла с высокой плотностью дислокаций в условиях отсутствия термически активационных процессов разупрочнения при деформационном разогреве металла в очаге деформации обеспечивается путем проведения прокатки с регламентированными окружными скоростями валков, при этом максимальную единичную степень деформации при прокатке полосы задают не более 75%, а после каждого прохода полосу охлаждают до температуры 20-25°С. 2 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов из металлических материалов, в том числе из алюминиевых сплавов. Повышение прочностных свойств металла одновременно как по длине, так и по ширине листа за счет создания в нем пространственно-равномерной фрагментированной структуры металла с высокой плотностью дислокаций обеспечивается путем осуществления прокатки тонкого листа в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%, при этом прокатку осуществляют за два или четыре прохода, причем в каждом проходе, начиная с первого, задают одинаковое рассогласование окружных скоростей валков и одинаковую единичную степень деформации металла, а между проходами осуществляют поворот листа в плоскости прокатки на угол 90°. 2 табл.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости упаковочной ленты способ включает получение сляба из стали, содержащей, мас.%: C 0,003 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3, однократную или двукратную холодную прокатку ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между стадиями холодной прокатки, электроосаждение слоя олова по меньшей мере на одну сторону ленты, причем масса покрытия слоя олова или слоев на одной или обеих сторонах ленты составляет не более 1000 мг/м2; отжиг ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и быстрое охлаждение ленты с покрытием со скоростью по меньшей мере 100°C/с. 2 н. и 8 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листа способ включает получение сляба из стали, содержащей, мас.%: С 0,05 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, при необходимости один или более элементов из: Nb от 0,001 до 0,1, Ti от 0,001 до 0,15, V от 0,001 до 0,2, Zr от 0,001 до 0,1, B от 5 до 50 ppm, Fe и неизбежные примеси - остальное, горячую прокатку при конечной температуре, большей или равной температуре превращения Ar3, однократную холодную прокатку с получением подложки, электроосаждение слоя олова на одну или обе стороны подложки с получением луженого стального листа для упаковочных применений, причем масса покрытия слоя олова или слоев составляет не более 1000 мг/м2, отжиг луженого упаковочного стального листа путем его нагрева со скоростью более 300°С/с до температуры Ta от 513°C до 645°C с выдержкой в течение времени ta с преобразованием слоя олова в слой железо-оловянного сплава, содержащего, по меньшей мере, 90, предпочтительно 95 мас.% FeSn с 50 ат.% Fe и 50 ат.% Sn, и охлаждение со скоростью по меньшей мере 100°С/с. 2 н. и 10 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости детали способ её изготовления включает стадии холодной прокатки подложки (3) с использованием рабочих валков, рабочая поверхность которых имеет шероховатость Ra2.5 меньшую или равную 3,6 мкм; нанесения металлического покрытия (7) по меньшей мере на одной поверхности (5) отожженной подложки (5) с помощью электролитического осаждения с образованием металлического листа (1); деформирования отрезанного металлического листа (1) с формированием деталей, при этом внешняя поверхность (21) металлического покрытия (7) после проведения стадии деформирования имеет волнистость Wa0,8 меньшую или равную 0,5 мкм. 3 н. И 15 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области прокатки, плоского проката из металлического материала, в частности из стального материала, к его применению, способу и валку для его изготовления. Для улучшения трибологических свойств и условий для нанесения лакового покрытия плоский прокат имеет детерминированную структуру поверхности, которая имеет большое количество углублений с глубиной в пределах от 2 до 14 мкм, причем углубления осуществлены I-образными, Н-образными, крестообразными, С-образными или Х-образными. Структура поверхности имеет количество пиков RPc в пределах от 45 до 180 1/см, среднюю арифметическую шероховатость Ra в пределах от 0,3 до 3,6 мкм и среднюю арифметическую волнистость Wsa в пределах от 0,05 до 0,65 мкм. Валок текстурирован с применением лазера и имеет детерминированную структуру поверхности с большим количеством перекрывающих друг друга чашевидных углублений соответствующей формы. Структура поверхности валка, измеренная в направлении валка, отличается количеством пиков RPc в пределах от 80 до 180 1/см, средней арифметической шероховатостью Ra в пределах от 2,5 до 3,5 мкм и средней арифметической волнистостью Wsa в пределах от 0,08 до 1,0 мкм. 4 н. и 13 з.п. ф-лы, 15 ил.
Наверх