Способ оценки технического состояния инженерного сооружения

Изобретение относится к средствам и методам диагностики инженерных сооружений и может быть использовано для контроля и оценки ресурса надежности и безопасной эксплуатации сооружений, работающих в условиях динамического нагружения. Способ включает создание динамической нагрузки в выбранных точках сооружения, регистрацию динамических показателей и оценку технического состояния сооружения. После возбуждения колебаний в определенных местах сооружения оценивают техническое состояние по сопоставлению коэффициентов жесткости с предыдущими замерами, причем коэффициент динамической жесткости представляет собой отношение максимальной динамической силы в выбранной точке замера к максимальному упругому смещению рассматриваемой точки. Технический результат заключается в повышении точности измерений.

 

Изобретение относится к области обеспечения безопасности инженерных сооружений, работающих в условиях динамического нагружения, что связано с контролем и оценкой ресурса надежности и безопасной эксплуатации.

В процессе эксплуатации инженерных сооружений, в том числе мостов, транспортных переходов, тоннелей, необходимо оценивать их техническое состояние, определяется динамическими свойствами конструкции. Для проведения динамических испытаний предлагается способ, основанный на использовании передвижного возбуждающего механизма с возможностью изменения силы воздействия и ее направленности, что позволяет вызвать вынужденные колебания в определенных точках конструкции для последующей фиксации и сравнительного анализа изменений, вызванных нагрузками и условиями интенсивной эксплуатации. При проведении патентного поиска выявлены следующие аналоги.

В патенте на изобретение (№2489696, МПК G01M 7/00, опубл. 10.08.2013) предложен способ, включающий возбуждение вынужденных колебаний исследуемой конструкции гармоническими силами с постоянными амплитудами и пошагово изменяемой частотой, измерение кинематических параметров перемещения, скорости или ускорения в точках возбуждения и амплитуды вынуждающих сил, построение амплитудных и фазовых частотных характеристик или синфазных и квадратурных составляющих кинематических параметров, определение резонансных частот и соответствующих им высот резонансных пиков. При этом перемещения одной из точек возбуждения на резонансных частотах принимаются за обобщенные координаты; в этих координатах определяются обобщенные массы системы, состоящей из испытуемого объекта, вибровозбудителя и переходных приспособлений, определяют «вклад» посторонних движущихся масс и находят собственные частоты и обобщенные массы испытуемого объекта. Технический результат заключается в повышении точности измерений при экспериментальном определении собственных частот и обобщенных масс колеблющихся конструкций испытываемого объекта.

Недостатком данного изобретения является отсутствие возможности проведения интегральных оценок изменения частот собственных колебаний в зависимости от времени и условий эксплуатации, а также отсутствие измерения динамической жесткости инженерных конструкций.

Известен также способ №2279653, МПК G01M 7/00, опубл. 10.07.2006. Сущность данного способа заключается в том, что тарированное ударное воздействие рассматривается в качестве источника волнового поля с известными амплитудно-временной и амплитудно-частотной характеристиками. Измерение реакции дорожной конструкции производится пьезокерамическими виброакселерометрами в контрольных точках на различном расстоянии от центра области контакта с поверхностью покрытия в направлении, параллельном оси автомобильной дороги. На основании данных амплитудно-временных зависимостей вертикальной составляющей ускорений производится вычисление амплитудно-временных зависимостей перемещений, спектральных и количественных характеристик волнового поля. Состояние отдельных элементов дорожной конструкции (слоев покрытия, основания и земляного полотна) оценивается при сопоставлении зависимостей комплекса предложенных параметров в различных контрольных точках, исходя из характера изменения экстремумов спектральных характеристик, продолжительностей сигналов откликов, коэффициентов затухания по значениям амплитуд ускорений и перемещений, а также предложенных количественных показателей. Технический результат заключается в усовершенствовании способа оценки состояния дорожных конструкций.

Недостатком данного изобретения является то, что не используется непрерывное динамическое воздействие и не определяется динамическая жесткость, изменения которой могли бы служить индикатором дефекта конструкции в данной оценочной позиции.

За прототип взят способ (патент на изобретение №2498255, МПК G01M 7/00, опубл. 10.11.2013), сущность которого заключается в том, что измерения частоты свободных колебаний пролета моста производятся около положения, в котором действие сил на него уравнивается с применением тестового сигнала типа белый шум. В этом случае величина частоты собственных колебаний может быть измерена с любой наперед заданной точностью как максимум спектра сигнала от реакции мостового сооружения на белый шум. При этом в качестве эталонного сигнала, близкого к белому шуму, предлагается использовать поток транспортных средств или движение железнодорожного эшелона через мост. Технический результат заключается в повышении точности и достоверности мониторинга жесткости и прочности конструкции.

Вместе с тем, недостатком данного способа является то, что в узлах конструкции сооружений происходит затухание внешних воздействий, особенно в области высоких частот, что снижает точность оценки технического состояния сооружения как по частотному спектру, так и по амплитудам.

Цель предлагаемого изобретения заключается в том, что с определенной периодичностью проводятся замеры в локальных местах конструкции с возможностями при проведении экспериментов соблюдения условий эквивалентности возмущения и частотного состава возбуждающего сигнала с последующим созданием электронной базы данных, позволяющей отслеживать изменения параметров в течение всего срока эксплуатации объекта.

Способ оценки технического состояния инженерного сооружения, включающий создание динамической нагрузки в выбранных точках сооружения, регистрацию динамических показателей и оценку технического состояния сооружения, отличающийся тем, что после возбуждения колебаний в определенных местах сооружения оценивают техническое состояние по сопоставлению коэффициентов жесткости с предыдущими замерами, причем коэффициент динамической жесткости представляет собой отношение максимальной динамической силы в выбранной точке замера к максимальному упругому смещению рассматриваемой точки.

Способ заключается в использовании специального рабочего органа (вибровозбудителя) и создании в выбранной точке усилия с гармонической составляющей определенной регулируемой амплитуды и частоты.

Вибровозбудитель представляет передвижную вибрационную машину, снабженную домкратами, с регулируемым эксцентриситетом, позволяющим регулировать частоту, амплитуду и вектор приложения вибрационного возмущения. Машина снабжена «пятой» (инструментом для генерации вибрационного воздействия) из свинцовистой резины, через которую обследуемому объекту сообщается требуемое усилие. Пята связана с рабочим органом сферическим шарниром.

Под динамической жесткостью понимается отношение максимальной возмущающей силы к максимальному упругому смещению в выбранной точке и определяется по формуле

.

Динамическая жесткость определяется расчетным путем, для чего необходимы фиксация усилий в точках контакта рабочего органа вибровозбудителя и объекта, а также использование данных измерительной аппаратуры, то есть учет скоростей, ускорений, динамических усилий, сообщаемых рабочим органом.

Для различных конструкций выбирается в соответствии с технической документацией система локальных точек для установки на них испытательного оборудования. Для последующего эффективного анализа информации устанавливается алгоритм перехода между выбранными точками, расстояние между которыми зависит от размеров инженерного сооружения. Время работы вибровозбудителя составляет 1,5-2 минуты, что определяет объем фиксируемых показаний. Информация, получаемая измерительной аппаратурой на каждой из точек, передается по спутниковому каналу в центр контроля и оценки технического состояния, где хранится общая электронная база по исследуемому объекту.

Предлагаемый способ использован при проведении технической диагностики конструкции моста и показал наличие возможностей более точной оценки ресурса различных частей сооружения, определения критических мест конструкции, а также общего ресурса инженерного сооружения.

Способ оценки технического состояния инженерного сооружения, включающий создание динамической нагрузки в выбранных точках сооружения, регистрацию динамических показателей и оценку технического состояния сооружения, отличающийся тем, что после возбуждения колебаний в определенных местах сооружения оценивают техническое состояние по сопоставлению коэффициентов жесткости с предыдущими замерами, причем коэффициент динамической жесткости представляет собой отношение максимальной динамической силы в выбранной точке замера к максимальному упругому смещению рассматриваемой точки.



 

Похожие патенты:

Изобретение относится к способу определения эффективности взрывозащиты. Способ заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне в испытательном боксе, где устанавливают макет взрывоопасного объекта.

Изобретение относится к метрологии, в частности, к методам контроля пошипников ГТД. Способ предполагает использование спектроанализатора для контроля сигнала с выхода микрофона.

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок. Стенд содержит узел формирования внешнего ударного воздействия, контейнер в виде полого поршня и стол, предназначенный для закрепления объекта испытаний, размещенный в контейнере с возможностью перемещения вдоль его продольной оси и связанный с контейнером посредством упругой связи.

Изобретение относится к области измерительной техники, в частности к методам испытаний пролетных строений, и может быть использовано при испытании автодорожных и городских мостов.

Изобретение относится к испытательному оборудованию и может быть использовано для виброакустических испытаний различных систем, имеющих упругие связи с корпусными деталями объекта.

Изобретение относится к испытательной технике, в частности оборудованию для испытаний приборов на вибрационные и ударные воздействия. Стенд содержит основание, на котором закреплена жесткая переборка с датчиком уровня вибрации, на которую устанавливают два одинаковых исследуемых объекта на различных системах их виброизоляции, и проводят измерения их амплитудно-частотных характеристик.

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом.

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации.

Заявленное изобретение относится к испытательной технике и может быть использовано при экспериментальной обработке изделий в лабораторных условиях. Сущность способа заключается в воспроизведении виброударных процессов на электрически управляемых вибростендах, характеризующихся формированием управляющего сигнала в виде временного отрезка импульсной переходной функции, получаемого путем управления начальной фазой и длительностью, причем указанное управление по сути представляет стробирование указанного управляющего сигнала, кроме того формирование указанного управляющего сигнала осуществляют с регулировкой уровня постоянной составляющей задаваемого сигнала.

Изобретение относится к области металлообработки и может быть использовано для прогнозирования параметров качества обрабатываемой поверхности. Способ включает формирование полигармонического возбуждающего воздействия на входе металлообрабатывающего станка путем взаимодействия инструмента станка в виде шлифовального круга или дисковой фрезы с поверхностью заготовки в виде пластины с пазами прямоугольного профиля в процессе ее обработки с заданными параметрами.

Сейсмоплатформа относится к испытательной технике и воспроизводит сейсмические нагрузки в виде трехмерных затухающих колебаний. Сейсмоплатформа содержит плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, которые установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена со стеной и с фундаментом через гидравлические приводы. Технический результат - обеспечение возможности генерирования трехмерных затухающих колебаний. 5 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики, осуществляют опрос датчиков, преобразуют полученную от датчиков информацию и передают ее на пункт контроля, выполненного в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее введенными в память компьютера фиксированными величинами. Датчики выполняют с возможностью получения от них информации об их пространственном положении. В пункте контроля формируют условное изображение контролируемой конструкции и фиксируют изменения пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей. По результатам сравнения этих отклонений с заранее введенными в память компьютера фиксированными величинами, соответствующими их допустимым значениям, судят о состоянии контролируемой конструкции. Условное изображение контролируемой конструкции выполняют в виде расчетной схемы контролируемой конструкции. Фиксацию изменений пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей, производят при различных нагружениях контролируемой конструкции. Технический результат заключается в повышении точности контроля. 2 ил.

Изобретение относится к вибрационной технике и может быть использовано для измерения, контроля и управления динамическими характеристиками вибрационных технологических машин. Способ включает установку на поверхности рабочего стола датчиков, фиксацию параметров вибрационного движения рабочего органа. При этом производят одновременную фиксацию сигналов с датчиков, расположенных на рабочем органе, с обязательной фиксацией измеряемого движения одной направленности, изменяя массоинерционные свойства рабочего органа путем перемещения вдоль перпендикулярных направляющих пригрузов, осуществляют управление характеристиками вибрационного поля. Устройство для реализации способа включает рабочий орган, жестко соединенный с вибратором, датчики. Вдоль краев рабочего стола установлены пригрузы с возможностью передвижения по команде с блока управления при поступлении информации от датчиков о необходимости изменения характеристики вибрационного поля. 2 н.п. ф-лы, 10 ил.

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ заключается в использовании для мониторинга технического состояния результатов синхронной регистрации контрольных параметров объекта мониторинга в ряде дискретных точек. Их использование на основе предложенной процедуры идентификации позволяет достоверно вычислить распределенные параметры напряженно-деформированного состояния объекта с последующей оценкой степени опасности их изменения в текущий момент времени, а также в прогнозном периоде путем их соотнесения с прочностными характеристиками материалов объекта контроля, а также с функциональными параметрами эксплуатации. Технический результат заключается в повышении точности оценок технического состояния объекта мониторинга, при одновременном снижении объемов контроля и исключения процедуры метрологической аттестации. 2 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия, и может быть использовано при испытаниях на ударные воздействия различных приборов и оборудования, требования к которым задаются в виде спектра удара. Устройство состоит из молота, подвески молота, поворотной траверсы, станины, фиксирующего устройства, наковальни для монтажа оборудования, регистрирующих датчиков. При этом наковальня выполнена в виде прямоугольной сменной металлической панели, жестко закрепленной к станине стенда с помощью стержней с резьбой, при этом сменная металлическая панель выполнена с вырезами прямоугольной формы и ребрами между вырезами. Причем все ребра одинаковые, а расстояние от кромки металлической панели, к которой прикладывается ударное воздействие, до вырезов не менее чем в 2 раза больше продольного размера выреза, но не менее чем в 2 раза меньше расстояния до противоположного относительно точки приложения ударного воздействия торца металлической панели. При этом собственные частоты поперечных колебаний ребер не совпадают с частотами продольных колебаний плиты до и после вырезов, а оси стержней, обеспечивающих крепление сменной металлической панели к станине, проходят через вырезы и не совпадают с осями ребер, причем между сменной металлической панелью и станиной устанавливают виброизолирующую прокладку. Технический результат заключается в повышении точности и стабильности воспроизведения ударного воздействия, заданного спектром ускорений. 11 ил., 2 табл.

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную, каркас фюзеляжа, амортизаторы, мотораму, двигатель внутреннего сгорания, подредукторную раму, редуктор, выходные соосные валы, автомат перекоса, соосные винты, муфту, рычаги, коромысла, нагрузочное устройство, устройство пилотирования с приводами управления автоматом перекоса, систему топливную, смазки, системы охлаждения, систему управления двигателем, устройство пожаротушения, систему приточно-вытяжной вентиляции, также устройство содержит пульт управления. Технический результат заключается в расширении функциональных возможностей и повышении безопасности. 18 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения ударных нагрузок на летательных аппаратах (ЛА). Способ включает измерение суммарного вибрационного и ударного процессов измерения суммарного вибрационного и ударного процесса в местах размещения бортового оборудования на концах крыла и концевых частях фюзеляжа ЛА, с применением преобразователей, чувствительные элементы которых реагируют на ускорение, возникающее в месте крепления этих преобразователей, его запись на регистратор. Дополнительно вначале выполняют обработку суммарной измерительной информации с получением измеренного амплитудного спектра в заданном диапазоне от нижней частоты до верхней. По заданному требованию в техническом задании на разработку БО эталонному удару с длительностью и амплитудным спектром, описываемым известным аналитическим выражением, вычисляют частоту среза, за пределами которой амплитудный спектр равен 0. Затем в пределах диапазона в измеренном амплитудном спектре выделяют частоту с максимальным значением амплитудного спектра. Производят идентификацию частоты с расчетным значением частот. Для этой частоты вычисляют ординату амплитудного спектра эталонного удара по известному аналитическому выражению для этого спектра в относительных величинах, рассчитывают амплитуду ускорения измеренного удара, а затем расчетное значение амплитуды удара сравнивают с заданным значением амплитуды эталонного удара. При этом должно быть выполнено условие, что амплитуда эталонного удара должна быть больше амплитуды измеренного удара, а полученное рассогласование между экспериментальным и заданными величинами амплитуд сравнивают с допустимым значением. В качестве эталонного может быть задан удар, амплитудный спектр которого описывается аналитической функцией полусинусоидального, прямоугольного или треугольного удара. Технический результат заключается в повышении достоверности определения параметров удара на конструкции крепления бортового оборудования ЛА, упрощении процедуры обработки и значительного сокращения времени анализа результатов. 1 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к области контрольно-измерительной техники и может найти применение при контроле состояния массивных бетонных сооружений. Способ включает создание компьютерных моделей сооружения, моделей нагрузок и воздействий на него, расчет характеристик несущих конструкций, сбор и обработку данных с контрольно-измерительной аппаратуры, данные натурных наблюдений по контрольно-измерительной аппаратуре, например закладных тензометров, восстанавливают по разработанной статистической модели с использованием расчетных значений напряжений в локальных точках массивного бетонного сооружения, полученных на имитационной математической модели, откалиброванной по значениям интегральных диагностических показателей сооружения, и данных наблюдений за сооружением в период, предшествующий выходу из строя контрольно-измерительной аппаратуры. Технический результат заключается в обеспечении мониторинга напряжений в случае выхода из строя закладной контрольно-измерительной аппаратуры и повышении тем самым надежности эксплуатации конструктивных элементов сооружений. 1 з.п. ф-лы, 5 ил.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений, и в других звукопоглощающих конструкциях. Технический результат заключается в повышении эффективности шумоглушения и надежности конструкции в целом. Способ исследования акустических характеристик звукопоглощающих элементов заключается в том, что испытываемый объект с новой исследуемой облицовкой устанавливают свободно на полу, включают на номинальные режимы работы и регистрируют уровни звукового давления на рабочем месте посредством акустических микрофонов, соединенных с шумомером из комплекта акустической аппаратуры, отвечающей требованиям к измерительным комплексам. Уровни звукового давления регистрируют в пяти точках по периметру испытываемого объекта на расстоянии 1 м от его габаритных размеров. Записывают показания шумомера в каждой точке не менее трех, а после замеров проводят расчет шумовых характеристик испытываемого объекта с новой исследуемой облицовкой по определенным математическим зависимостям. 1 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях. Технический результат заключается в повышении эффективности шумоглушения и надежности конструкции в целом. Стенд для исследования акустических характеристик звукопоглощающих элементов в производственных помещениях содержит испытуемый объект, который установлен свободно на полу в помещении, а в пяти точках измерения, по периметру испытуемого объекта, на расстоянии 1 м от его габаритных размеров, установлены акустические микрофоны из комплекта акустической аппаратуры, отвечающей требованиям к измерительным комплексам, при этом количество точек измерения равно пяти, а число измерений в каждой точке равно трем, после замеров проводится расчет шумовых характеристик объекта по определенным математическим выражениям. 1 з.п. ф-лы, 5 ил., 3 табл.

Изобретение относится к средствам и методам диагностики инженерных сооружений и может быть использовано для контроля и оценки ресурса надежности и безопасной эксплуатации сооружений, работающих в условиях динамического нагружения. Способ включает создание динамической нагрузки в выбранных точках сооружения, регистрацию динамических показателей и оценку технического состояния сооружения. После возбуждения колебаний в определенных местах сооружения оценивают техническое состояние по сопоставлению коэффициентов жесткости с предыдущими замерами, причем коэффициент динамической жесткости представляет собой отношение максимальной динамической силы в выбранной точке замера к максимальному упругому смещению рассматриваемой точки. Технический результат заключается в повышении точности измерений.

Наверх