Сейсмоплатформа

Сейсмоплатформа относится к испытательной технике и воспроизводит сейсмические нагрузки в виде трехмерных затухающих колебаний. Сейсмоплатформа содержит плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, которые установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена со стеной и с фундаментом через гидравлические приводы. Технический результат - обеспечение возможности генерирования трехмерных затухающих колебаний. 5 з.п. ф-лы, 6 ил.

 

Изобретение относится к испытательной технике, в частности к сейсмоплатформам, предназначенным для испытания строительных конструкций на сейсмостойкость.

Известна виброплатформа для испытаний конструкций на сейсмостойкость, содержащая прикрепленную на упругих подвесках к стойкам фундамента основную площадку, вибратор направленного действия, гидродомкраты для выведения площадки из нейтрального положения, дополнительную площадку, смонтированную также на упругих подвесках и соединенную с основной площадкой гидроцилиндрами, горизонтальные пружинные амортизаторы, систему пластинчатых тормозов, выполненных с возможностью изменения сил торможения, а на фундаменте виброплатформы между основной и дополнительной площадками смонтированы упоры (SU №207438, G01М 7/04, 22.12.1967, бюл. №2).

Недостатком данной виброплатформы является генерирование сейсмических воздействий только в виде горизонтальных или вертикальных колебаний.

Известен сейсмостенд, содержащий платформу для закрепления испытываемого изделия, упруго соединенную с основанием, и средства для возбуждения двухмерных затухающих колебаний платформы с изделием, которые выполнены в виде эксцентрика, привода его вращения, соединяющий их сцепной муфтой, выполненной с возможностью расцепления после одного поворота вала, и расположенного под углом к плоскости платформы гибкого элемента, соединяющего платформу с эксцентриком (SU №808895, G01М 7/00, 28.02.1981, бюл. №8).

Недостатком данного сейсмостенда является генерирование сейсмических воздействий только в виде двухмерных колебаний.

Наиболее близким техническим решением к заявляемой сейсмоплатформе является сейсмоплатформа, содержащая плиту для размещения испытуемого элемента сооружения или здания, установленную на маятниковые опоры и соединенную с фундаментом и стеной с помощью гидравлических приводов, причем маятниковые опоры установлены на опорную раму (Lyan-Ywan Lu et al. Eccentric Rocking Bearings with a Designable Friction Property for Seusmic Isolation: Experiment and Analysis // EARTHQUAKE SPECTRA, the professional Journal of the Earthqueke Engineering Research Institute. - 2013. - V. 29, N. 3. - P. 869-895).

Недостатком данной виброплатформы является генерирование сейсмических воздействий только в виде горизонтальных или вертикальных колебаний.

Задачей изобретения является создание сейсмоплатформы, позволяющей воспроизводить сейсмические нагрузки в виде трехмерных затухающих колебаний.

Технический результат достигается тем, что в сейсмоплатформе, содержащей плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, гидравлические приводы, соединенные со стеной и с фундаментом, опоры установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена с гидравлическими приводами.

Дополнительная прокладная плита может быть выполнена Г-образной формы, боковая стенка которой соединена с плитой для размещения испытуемого элемента сооружения или здания с помощью упругих элементов.

Дополнительная прокладная плита может быть выполнена корытообразной формы, боковые стенки которой соединены с плитой для размещения испытуемого элемента сооружения или здания с помощью упругих элементов.

Упругие элементы и опоры могут быть выполнены в виде тарельчатых пружин.

Опоры могут быть выполнены в виде резинометаллических опор. Податливые в горизонтальном направлении опоры могут быть выполнены скользящими.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображен общий вид сейсмоплатформы, на фиг. 2 изображена сейсмоплатформа с прокладной плитой Г-образной формы, на фиг. 3 изображена сейсмоплатформа с прокладной плитой корытообразной формы, на фиг. 4 изображена сейсмоплатформа, в которой упругие элементы и опоры выполнены в виде тарельчатых пружин, на фиг. 5 изображена сейсмоплатформа, в которой опоры выполнены в виде резинометаллических опор, на фиг. 6 изображена сейсмоплатфрма, в которой податливые в горизонтальном направлении опоры выполнены скользящими.

Сейсмоплатформа содержит прокладную плиту 1, через гидравлические приводы 2, 3 соединенную с фундаментом, и гидравлический привод 4, соединенный со стеной, и установленную на податливые в горизонтальном направлении опоры 5, 6. Гидравлические приводы 2, 3, 4 работают от гидравлической пульсирующей установки (не показана). Прокладная плита 1 соединена с плитой 7 для размещения испытуемого элемента 8 здания или сооружения с помощью опор 9, 10, которые могут быть выполнены в виде витых пружин (фиг. 1), тарельчатых пружин (фиг. 4), резинометаллических опор (фиг. 5). На плите 7 испытуемый элемент 8 здания или сооружения размещается со смещением относительно центра плиты. Прокладная плита 1 может быть выполнена Г-образной формы (фиг. 2), боковая стенка которой соединена с плитой 7 для размещения испытуемого элемента 8 сооружения или здания с помощью упругих элементов 11. Прокладная плита 1 может быть выполнена корытообразной формы (фиг. 3), боковые стенки которой соединены с плитой 7 для размещения испытуемого элемента 8 сооружения или здания с помощью упругих элементов 11, 12. Податливые в горизонтальном направлении опоры 5, 6 могут быть выполнены скользящими (фиг. 6).

Возбуждение колебаний прокладной плиты 1 осуществляется за счет гидравлических приводов 2, 3, 4. Плита 7 для размещения испытуемого элемента 8 сооружения или здания опирается на прокладную плиту 1 через опоры 9, 10, выполненные в виде витых пружин.

Испытуемый элемент 8 сооружения или здания приподнят на высоту над уровнем прокладной плиты 7 с целью создания момента кручения. Также в плане испытуемый элемент 8 сооружения или здания располагается со смещением относительно центра плиты 7, что создает момент кручения.

Сейсмоплатформа работает следующим образом: при возбуждении колебаний, создаваемых гидравлическими приводами 2, 3, 4, работающими от гидравлической пульсирующей установки, прокладная плита 1 совершает двухмерное движение, а плита 7 за счет упругих элементов 11, 12 и эксцентричного крепления испытуемого элемента 8 сооружения или здания совершает трехмерное движение.

1. Сейсмоплатформа, содержащая плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, гидравлические приводы, соединенные со стеной и с фундаментом, отличающаяся тем, что опоры установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена с гидравлическими приводами.

2. Сейсмоплатформа по п. 1, отличающаяся тем, что дополнительная прокладная плита выполнена Г-образной формы, боковая стенка которой соединена с плитой для размещения испытуемого элемента сооружения или здания с помощью упругих элементов.

3. Сейсмоплатформа по п. 1, отличающаяся тем, что дополнительная прокладная плита выполнена корытообразной формы, боковые стенки которой соединены с плитой для размещения испытуемого элемента сооружения или здания с помощью упругих элементов.

4. Сейсмоплатформа по любому из пп. 1-3, отличающаяся тем, что упругие элементы и опоры выполнены в виде тарельчатых пружин.

5. Сейсмоплатформа по любому из пп. 1-3, отличающаяся тем, что опоры выполнены в виде резинометаллических опор.

6. Сейсмоплатформа по п. 1, отличающаяся тем, что податливые в горизонтальном направлении опоры выполнены скользящими.



 

Похожие патенты:

Изобретение относится к средствам и методам диагностики инженерных сооружений и может быть использовано для контроля и оценки ресурса надежности и безопасной эксплуатации сооружений, работающих в условиях динамического нагружения.

Изобретение относится к способу определения эффективности взрывозащиты. Способ заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне в испытательном боксе, где устанавливают макет взрывоопасного объекта.

Изобретение относится к метрологии, в частности, к методам контроля пошипников ГТД. Способ предполагает использование спектроанализатора для контроля сигнала с выхода микрофона.

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок. Стенд содержит узел формирования внешнего ударного воздействия, контейнер в виде полого поршня и стол, предназначенный для закрепления объекта испытаний, размещенный в контейнере с возможностью перемещения вдоль его продольной оси и связанный с контейнером посредством упругой связи.

Изобретение относится к области измерительной техники, в частности к методам испытаний пролетных строений, и может быть использовано при испытании автодорожных и городских мостов.

Изобретение относится к испытательному оборудованию и может быть использовано для виброакустических испытаний различных систем, имеющих упругие связи с корпусными деталями объекта.

Изобретение относится к испытательной технике, в частности оборудованию для испытаний приборов на вибрационные и ударные воздействия. Стенд содержит основание, на котором закреплена жесткая переборка с датчиком уровня вибрации, на которую устанавливают два одинаковых исследуемых объекта на различных системах их виброизоляции, и проводят измерения их амплитудно-частотных характеристик.

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом.

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации.

Заявленное изобретение относится к испытательной технике и может быть использовано при экспериментальной обработке изделий в лабораторных условиях. Сущность способа заключается в воспроизведении виброударных процессов на электрически управляемых вибростендах, характеризующихся формированием управляющего сигнала в виде временного отрезка импульсной переходной функции, получаемого путем управления начальной фазой и длительностью, причем указанное управление по сути представляет стробирование указанного управляющего сигнала, кроме того формирование указанного управляющего сигнала осуществляют с регулировкой уровня постоянной составляющей задаваемого сигнала.

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики, осуществляют опрос датчиков, преобразуют полученную от датчиков информацию и передают ее на пункт контроля, выполненного в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее введенными в память компьютера фиксированными величинами. Датчики выполняют с возможностью получения от них информации об их пространственном положении. В пункте контроля формируют условное изображение контролируемой конструкции и фиксируют изменения пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей. По результатам сравнения этих отклонений с заранее введенными в память компьютера фиксированными величинами, соответствующими их допустимым значениям, судят о состоянии контролируемой конструкции. Условное изображение контролируемой конструкции выполняют в виде расчетной схемы контролируемой конструкции. Фиксацию изменений пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей, производят при различных нагружениях контролируемой конструкции. Технический результат заключается в повышении точности контроля. 2 ил.

Изобретение относится к вибрационной технике и может быть использовано для измерения, контроля и управления динамическими характеристиками вибрационных технологических машин. Способ включает установку на поверхности рабочего стола датчиков, фиксацию параметров вибрационного движения рабочего органа. При этом производят одновременную фиксацию сигналов с датчиков, расположенных на рабочем органе, с обязательной фиксацией измеряемого движения одной направленности, изменяя массоинерционные свойства рабочего органа путем перемещения вдоль перпендикулярных направляющих пригрузов, осуществляют управление характеристиками вибрационного поля. Устройство для реализации способа включает рабочий орган, жестко соединенный с вибратором, датчики. Вдоль краев рабочего стола установлены пригрузы с возможностью передвижения по команде с блока управления при поступлении информации от датчиков о необходимости изменения характеристики вибрационного поля. 2 н.п. ф-лы, 10 ил.

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ заключается в использовании для мониторинга технического состояния результатов синхронной регистрации контрольных параметров объекта мониторинга в ряде дискретных точек. Их использование на основе предложенной процедуры идентификации позволяет достоверно вычислить распределенные параметры напряженно-деформированного состояния объекта с последующей оценкой степени опасности их изменения в текущий момент времени, а также в прогнозном периоде путем их соотнесения с прочностными характеристиками материалов объекта контроля, а также с функциональными параметрами эксплуатации. Технический результат заключается в повышении точности оценок технического состояния объекта мониторинга, при одновременном снижении объемов контроля и исключения процедуры метрологической аттестации. 2 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия, и может быть использовано при испытаниях на ударные воздействия различных приборов и оборудования, требования к которым задаются в виде спектра удара. Устройство состоит из молота, подвески молота, поворотной траверсы, станины, фиксирующего устройства, наковальни для монтажа оборудования, регистрирующих датчиков. При этом наковальня выполнена в виде прямоугольной сменной металлической панели, жестко закрепленной к станине стенда с помощью стержней с резьбой, при этом сменная металлическая панель выполнена с вырезами прямоугольной формы и ребрами между вырезами. Причем все ребра одинаковые, а расстояние от кромки металлической панели, к которой прикладывается ударное воздействие, до вырезов не менее чем в 2 раза больше продольного размера выреза, но не менее чем в 2 раза меньше расстояния до противоположного относительно точки приложения ударного воздействия торца металлической панели. При этом собственные частоты поперечных колебаний ребер не совпадают с частотами продольных колебаний плиты до и после вырезов, а оси стержней, обеспечивающих крепление сменной металлической панели к станине, проходят через вырезы и не совпадают с осями ребер, причем между сменной металлической панелью и станиной устанавливают виброизолирующую прокладку. Технический результат заключается в повышении точности и стабильности воспроизведения ударного воздействия, заданного спектром ускорений. 11 ил., 2 табл.

Изобретение относится к испытательной технике, в частности к стендам, и может быть использовано в авиационной испытательной технике для испытаний элементов беспилотного вертолета с соосными винтами. Устройство содержит фундамент стенда, силовой каркас, зажимные приспособления, раму монтажную, каркас фюзеляжа, амортизаторы, мотораму, двигатель внутреннего сгорания, подредукторную раму, редуктор, выходные соосные валы, автомат перекоса, соосные винты, муфту, рычаги, коромысла, нагрузочное устройство, устройство пилотирования с приводами управления автоматом перекоса, систему топливную, смазки, системы охлаждения, систему управления двигателем, устройство пожаротушения, систему приточно-вытяжной вентиляции, также устройство содержит пульт управления. Технический результат заключается в расширении функциональных возможностей и повышении безопасности. 18 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения ударных нагрузок на летательных аппаратах (ЛА). Способ включает измерение суммарного вибрационного и ударного процессов измерения суммарного вибрационного и ударного процесса в местах размещения бортового оборудования на концах крыла и концевых частях фюзеляжа ЛА, с применением преобразователей, чувствительные элементы которых реагируют на ускорение, возникающее в месте крепления этих преобразователей, его запись на регистратор. Дополнительно вначале выполняют обработку суммарной измерительной информации с получением измеренного амплитудного спектра в заданном диапазоне от нижней частоты до верхней. По заданному требованию в техническом задании на разработку БО эталонному удару с длительностью и амплитудным спектром, описываемым известным аналитическим выражением, вычисляют частоту среза, за пределами которой амплитудный спектр равен 0. Затем в пределах диапазона в измеренном амплитудном спектре выделяют частоту с максимальным значением амплитудного спектра. Производят идентификацию частоты с расчетным значением частот. Для этой частоты вычисляют ординату амплитудного спектра эталонного удара по известному аналитическому выражению для этого спектра в относительных величинах, рассчитывают амплитуду ускорения измеренного удара, а затем расчетное значение амплитуды удара сравнивают с заданным значением амплитуды эталонного удара. При этом должно быть выполнено условие, что амплитуда эталонного удара должна быть больше амплитуды измеренного удара, а полученное рассогласование между экспериментальным и заданными величинами амплитуд сравнивают с допустимым значением. В качестве эталонного может быть задан удар, амплитудный спектр которого описывается аналитической функцией полусинусоидального, прямоугольного или треугольного удара. Технический результат заключается в повышении достоверности определения параметров удара на конструкции крепления бортового оборудования ЛА, упрощении процедуры обработки и значительного сокращения времени анализа результатов. 1 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к области контрольно-измерительной техники и может найти применение при контроле состояния массивных бетонных сооружений. Способ включает создание компьютерных моделей сооружения, моделей нагрузок и воздействий на него, расчет характеристик несущих конструкций, сбор и обработку данных с контрольно-измерительной аппаратуры, данные натурных наблюдений по контрольно-измерительной аппаратуре, например закладных тензометров, восстанавливают по разработанной статистической модели с использованием расчетных значений напряжений в локальных точках массивного бетонного сооружения, полученных на имитационной математической модели, откалиброванной по значениям интегральных диагностических показателей сооружения, и данных наблюдений за сооружением в период, предшествующий выходу из строя контрольно-измерительной аппаратуры. Технический результат заключается в обеспечении мониторинга напряжений в случае выхода из строя закладной контрольно-измерительной аппаратуры и повышении тем самым надежности эксплуатации конструктивных элементов сооружений. 1 з.п. ф-лы, 5 ил.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений, и в других звукопоглощающих конструкциях. Технический результат заключается в повышении эффективности шумоглушения и надежности конструкции в целом. Способ исследования акустических характеристик звукопоглощающих элементов заключается в том, что испытываемый объект с новой исследуемой облицовкой устанавливают свободно на полу, включают на номинальные режимы работы и регистрируют уровни звукового давления на рабочем месте посредством акустических микрофонов, соединенных с шумомером из комплекта акустической аппаратуры, отвечающей требованиям к измерительным комплексам. Уровни звукового давления регистрируют в пяти точках по периметру испытываемого объекта на расстоянии 1 м от его габаритных размеров. Записывают показания шумомера в каждой точке не менее трех, а после замеров проводят расчет шумовых характеристик испытываемого объекта с новой исследуемой облицовкой по определенным математическим зависимостям. 1 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях. Технический результат заключается в повышении эффективности шумоглушения и надежности конструкции в целом. Стенд для исследования акустических характеристик звукопоглощающих элементов в производственных помещениях содержит испытуемый объект, который установлен свободно на полу в помещении, а в пяти точках измерения, по периметру испытуемого объекта, на расстоянии 1 м от его габаритных размеров, установлены акустические микрофоны из комплекта акустической аппаратуры, отвечающей требованиям к измерительным комплексам, при этом количество точек измерения равно пяти, а число измерений в каждой точке равно трем, после замеров проводится расчет шумовых характеристик объекта по определенным математическим выражениям. 1 з.п. ф-лы, 5 ил., 3 табл.

Сейсмоплатформа относится к испытательной технике и воспроизводит сейсмические нагрузки в виде трехмерных затухающих колебаний. Сейсмоплатформа содержит плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, которые установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена со стеной и с фундаментом через гидравлические приводы. Технический результат - обеспечение возможности генерирования трехмерных затухающих колебаний. 5 з.п. ф-лы, 6 ил.

Наверх