Нелинейно-оптический композиционный материал

Изобретение относится к оптико-механической промышленности, а именно к технологии получения нелинейно-оптических материалов для оптических и оптико-электронных приборов и комплексов. Нелинейно-оптический композиционный материал содержит воду, от 15 до 22 вес.% водорастворимого органического полимера, обратимо образующего жидкий раствор в интервале температур 284-298K, и фотоактивные наночастицы. Технический результат состоит в возможности восстановления свойств и структуры материала, поврежденной в результате воздействия мощного светового излучения. 3 ил.

 

Изобретение относится к оптико-механической промышленности, а точнее к технологии получения нелинейно-оптических материалов для оптических и оптико-электронных приборов и комплексов.

Известен нелинейно-оптический композит (Патент РФ №2399940, МПК G02F 1/355, дата приоритета 21.11.2007 г., опубликовано 20.09.2010 г.), содержащий наночастицы с полупроводниковым ядром и металлической оболочкой, ядро наночастицы изготовлено из полупроводника с глубокими примесными уровнями в запрещенной зоне, причем энергетический зазор между дном зоны проводимости и примесными уровнями не превышает энергию фотонов рабочего спектрального диапазона композита. В качестве конкретных примеров нелинейно-оптических композитов в этом патенте описаны материалы, состоящие из полиметилметакрилата, содержащего: а) наночастицы оксида цинка размером 40-45 нм, имеющие покрытие из серебра толщиной 7 нм; или б) наночастицы HgO размером 70-75 нм с оболочкой из серебра толщиной 3 нм. Недостатком этого нелинейно-оптического композита является невозможность удаления повреждений структуры материала и восстановления его оптических характеристик после его облучения мощным оптическим излучением.

Известен нелинейно-оптический композиционный материал для оптического ограничения лазерного излучения в видимой и ближней ИК области спектра (Р.А. Танеев, А.И. Реснянский, М.К. Кодиров, Ш.Р. Камалов, В.А. Ли, Р.И. Тугушев, Т. Усманов "Нелинейно-оптические характеристики и оптическое ограничение в водных растворах поливинилпирролидона, допированного кобальтом" - ЖТФ, 2002, т. 72, №8, с. 58-63.), включающий металлоорганические комплексы на основе поливинилпирролидона. Описанные в этой статье результаты показали, что нелинейное поглощение этим материалом в видимой части спектра играет существенную роль в оптическом ограничении, однако в ближней ИК области спектра (λ=1,06 мкм) нелинейное поглощение отсутствует.

В работе (Ι.Μ. Belousova, D.A. Videnichev, V.M. Volynkin, S.K. Evstropiev, I.M. Kyslyakov, T.D. Murav'ova, E.G. Rakov "Nonlinear Optical Limiters of Pulsed Laser Radiation Based on Carbon-Containing Nanostructures in Viscous and Solid Matrices" - Polymers for Advanced Technologies, 2014) описаны результаты исследований по оптическому ограничению лазерного излучения композиционными золями и гелями кремнезема, содержащими углеродные наночастицы. Существенным недостатком описанных в этой работе материалов является то, что из-за частичного испарения материала в локальной области прохождения мощного светового излучения необратимо образуются видимые невооруженным глазом газовые пузырьки. Сформированная структура неорганического геля препятствует их удаления из объема материала. Таким образом, при прохождении мощного светового излучения в материале необратимо формируются макроскопические дефекты, препятствующие дальнейшему использованию оптического ограничителя.

По технической сущности наиболее близким к предлагаемому материалу является нелинейно-оптический материал, описанный в работе (Jiang H., DeRosa M., Su W., Brabt M., McLean D., Bunning T. Polymer host materials for optical limiting.- SPIE Proceedings, v. 3472, 0277-786X/98. Part of the SPIE Conference on Nonlinear Optical Liquids for Power Limiting and Imaging, San Diego, California, July 1998). В этой работе в качестве нелинейно-оптических материалов рассматриваются гидрогели на основе хитозана как матрицы для оптического ограничителя лазерного излучения. Гидрогели обладают более высоким порогом оптического пробоя по сравнению с твердыми полимерными материалами, такими как полиметилметакрилат (ПММА). Кроме того, в этих материалах наблюдается явление, важное для практического применения нелинейно-оптических материалов - самозалечивание дефектов структуры материала, вызванных воздействием мощного светового излучения, и восстановление их оптических свойств. Было показано, что чем больше содержание воды в гидрогеле, тем выше порог пробоя и лучше проходит самозалечивание материала. Вместе с тем, приведенные в статье экспериментальные данные свидетельствуют о том, что наиболее высокие пороги оптического пробоя и наиболее эффективное самозалечивание наблюдаются у материалов с очень низкой объемной долей полимерной фазы (менее 2%), которые близки к жидким растворам полимера. Об этом свидетельствует также и описанный в этой работе характер разрушения материала под действием мощного лазерного излучения и процесс его самозалечивания. Таким образом, важный для практики эффект самозалечивания после мощного светового воздействия, для материала, описанного в этой статье, достигается за счет наличия в его составе большого избытка жидкой фазы и практически отсутствующего структурообразующего полимерного каркаса. Это определяет существенные недостатки материала-прототипа: низкие механические, термооптические и прочностные характеристики материала.

Технический результат предлагаемого изобретения состоит в существенном повышении эксплуатационных характеристик нелинейно-оптического композиционного материала, заключающемся в возможности восстановления свойств и структуры материала, поврежденной в результате воздействия мощного светового излучения.

Сущность заключается в том, что разработан оптически прозрачный полимерный гелевый материала, включающий фотоактивные наночастицы, обладающие нелинейно-оптическим откликом и отличающийся тем, что при изменении температуры в пределах 10°С он способен полностью восстанавливать свою структуру, поврежденную при облучении световым излучением высокой мощности, а также свои спектральные и нелинейно-оптические характеристики во всем объеме материала. Такое свойство может быть использовано в фильтре достаточно простой конструкции (например, с включением в нее компактных электроуправляемых термоэлементов), что можно отнести к конструкционным достоинствам нового материала.

В нелинейно-оптическом композиционном материале в качестве структурообразующего компонента композиционного материала используется органический водорастворимый полимер, образующий, в определенном интервале температур, в водном растворе прозрачный гель, и позволяющий стабилизировать фотоактивные наночастицы.

В основе предлагаемого подхода к созданию нового нелинейно-оптического материала лежит использование того факта, что для определенного содержания водорастворимого полимера в воде температурный диапазон обратимого перехода из жидкого состояния раствора в гелеобразное близок к рабочему температурному диапазону ограничителей оптического излучения.

Так, например, для гидрофильного сополимера полиоксипропилена и полиоксиэтилена (плюроник F127, производитель - фирма BASF (Германия)) этот температурный диапазон обратимого перехода из гелеобразного состояния раствора в жидкое состояние составляет 11-25°С.

Обратимость и относительная высокая скорость этого перехода (для образца объемом 10 см3 время перехода составляет несколько минут) позволяет использовать его для удаления образующихся при мощном световом облучении газовых пузырьков при жидком состоянии композиционного материала.

Отличие предлагаемого материала от существующих аналогов нелинейно-оптических материалов состоит в возможности «залечивания» локальных повреждений оптического материала, вызванных мощным лазерным изучением, управляемого с помощью нагрева или охлаждения материала, предусмотренного конструкцией фильтра, выше или ниже области существования геля на фазовой диаграмме. При этом область существования геля определяет рабочий диапазон температур материала и варьируется выбором полимера и его концентрацией в материале. Линейное пропускание материала на рабочей длине волны фильтра варьируется концентрацией вводимых наночастиц, и составляет, в зависимости от назначения фильтра, несколько десятков процентов.

Разработанный композиционный материал характеризуется высокой (>1000 сП) вязкостью в диапазоне температур существования геля.

Технический результат изобретения заключается в том, что новый нелинейно-оптический композиционный материал способен при изменении температуры на ≤10 градусов обратимо восстанавливать структуру материала, поврежденную в результате облучения мощным световым излучением.

Сущность изобретения поясняется чертежами, где на: фиг. 1 представлена диаграмма, иллюстрирующая область химических составов и температур, в которых раствор полимера находится в гелеобразном состоянии;

фиг. 2 - нелинейная зависимость пропускания лазерного импульса длительностью 5 нс на длине волны 532 нм от энергии импульса: (1) чистый гидрогель (красная кривая); (2) суспензия наночастиц углерода в воде; (3) гидрогель плюроника, содержащий наночастицы углерода (черная кривая); фиг. 3 - внешний вид образца материала гидрогеля плюроника: (а) - после воздействия мощными лазерными импульсами; (б) - после воздействия мощными лазерными импульсами и при последующей выдержке в течение 10 минут при температуре 20°С.

Из диаграммы на фигуре 1 видно, что для материала с содержанием плюроника F-127 15-22 вес. % существует область температур 11-25°С (284-298K), при которой материал находится в форме жидкого раствора. При этих температурах происходит быстрое удаление из объема жидкого раствора газообразных продуктов, образующихся при прохождении через материал мощного светового излучения. Приведенная диаграмма определяет граничные концентрации разработанного нелинейно-оптического материала при которых реализуется обратимое восстановление структуры материал, поврежденной в результате облучения мощным световым излучением. При содержании плюроника F-127 более 22 вес. % материал формирует полимерный гель, который не переходит в состояние жидкого раствора при колебаниях температуры в области >11°С и, соответственно, восстановления структуры материал при изменениях температуры не происходит. При содержании плюроника F-127 менее 15 вес. % температурная область существования жидкого раствора существенно расширяется в область высоких температур, при температурах, превышающих 11°С, материал находится в жидком состоянии. Это существенно ухудшает его прочностные и эксплуатационные характеристики.

ПРИМЕР 1

В качестве водорастворимого гелеобразующего полимера использовался плюроник F127 (BASF, Германия). В качестве фотоактивных частиц при синтезе материала были использованы наночастицы углерода.

Фиг. 2 показывает нелинейно-оптический эффект ограничения мощного лазерного излучения в чистом гидрогеле плюроника, суспензии углеродных наночастиц и в гидрогеле плюроника, с введением в него наночастиц углерода. Из фиг. 2 видно, что:

1. Порог нелинейного отклика чистого полимерного геля, обусловленный многофотонным поглощением, на два порядка выше, чем в нанокомпозитном материале (кривые 1 и 2).

2. Порог нелинейного отклика углеродных наночастиц в гидрогеле в 3-4 раза выше, чем в воде, что означает 3-4-кратное ослабление нелинейно-оптического отклика фотоактивных частиц, помещенных в твердый материал (кривая 3). В то же время порядок величины нелинейности в материале на основе гидрогеля остается прежним, что подтверждает наличие функциональных свойств у нового материала.

Фиг. 3 демонстрирует восстановление оптического качества материала, поврежденного мощным лазерным излучением, при охлаждении его ниже температурного диапазона существования геля.

Таким образом, пример доказывает высокую эффективность нелинейно-оптического ограничения мощного светового излучения разработанным материалом и улучшение эксплуатационных свойств - возможность восстановления его структуры, поврежденной в результате мощного светового воздействия.

Нелинейно-оптический композиционный материал, содержащий воду, органический полимер и фотоактивные наночастицы, отличающийся тем, что содержит от 15 до 22 вес.% водорастворимого органического полимера, обратимо образующего жидкий раствор в интервале температур 284-298K.



 

Похожие патенты:

Изобретение относится к фазоконтрастному устройство для осуществления инверсии по яркости изображения непрозрачных объектов - получение позитива из негатива и наоборот.

Изобретение предназначено для исследования и модификации поверхности измеряемых объектов с помощью источников излучения. Сканирующее устройство локального воздействия включает образец (1) с первой (2) и второй поверхностями (3), зонд (4) с острием (5), закрепленный в модуле зонда (7), сканер (8), первый модуль перемещения (9) и блок управления (10).

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля.

Изобретение относится к области измерительной техники и касается способа измерения температуры. Способ включает в себя предварительное построение экспериментальной градуировочной кривой зависимости от температуры величины магнитного поля в точке антипересечения уровней (АПУ) энергии спиновых центров с возбужденным квадруплетным спиновым состоянием S=3/2, содержащихся в кристалле карбида кремния.

Изобретение относится к области оптических измерений и касается оптического квантового термометра. Термометр включает в себя генератор низкой частоты (НЧ), конденсатор, катушку электромагнита, помещенный в катушку активный материал в виде кристалла карбида кремния, содержащий по меньшей мере один спиновый центр на основе вакансии кремния с возбужденным квадруплетным спиновым состоянием S=3/2, источник постоянного тока, синхронный детектор, блок управления, лазер и фотоприемник.
Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК).

Изобретение относится к фармацевтически приемлемым суспензиям для лечения рака. Суспензии включают воду, усилитель обработки и золото-платиновые биметаллические нанокристаллы, которые имеют средний размер частиц менее чем 50 нм, присутствуют в суспензии в общей атомной концентрации металла, равной 2-1000 ч/млн, и имеют поверхности, обладающие по меньшей мере одной характеристикой, выбранной из: (1) нет органических химических составляющих, прилипших или прикрепленных к упомянутым поверхностям, и (2) являются по существу чистыми и не имеют химических составляющих, прилипших или прикрепленных к поверхностям, отличных от воды, продуктов лизиса воды или усилителя обработки, ни один из которых не изменяет функционирование нанокристаллов.

Изобретение может быть использовано при получении аккумуляторов водорода, воспламенительных и термитных составов, катализаторов гидрирования органических соединений.

Изобретение относится к области обогащения полезных ископаемых, в частности к извлечению ультрадисперсных алмазов из сырья импактного происхождения, и может быть использовано при переработке кимберлитовых руд.
Настоящее изобретение относится к фармацевтике, в частности к способу лечения гепатоклеточной карциномы. Способ лечения заключается во введении пациенту наночастиц, содержащих по меньшей мере один химиотерапевтический противоопухолевый агент, представляющий собой доксорубицин, по меньшей мере один поли(С1-С12алкилцианоакрилат) и по меньшей мере один циклодекстрин.

Изобретение относится к тонкопленочной технологии получения мультиферроиков, а именно получению прозрачных наноразмерных пленок феррита висмута, которые обладают свойствами мультиферроика при комнатной температуре, так как температура Кюри BiFeO3 830°С, а температура антиферромагнитного перехода 370°С, и может быть использовано в производстве магнитооптических устройств записи, хранения и обработки информации.

Изобретение относится к получению многослойной энерговыделяющей наноструктурированной фольги для соединения материалов. Способ включает приготовление исходной смеси металлических порошков планетарным перемешиванием, формование смеси порошков горячей прецизионной прокаткой через валки. В исходную смесь металлических порошков вводят легирующие добавки, после чего полученную смесь порошков просушивают и просеивают в инертной газовой среде в магнитном поле с выделением фракций более 220 мкм. Формование смеси порошков ведут горячей прецизионной прокаткой через валки посредством не менее одного прохода через валки с получением пластин толщиной не более 150 мкм, затем на полученные пластины наносят тонкий слой от 1 нм до 7 мкм пластичного металла посредством газотермического двустороннего напыления с использованием сверхчистых мишеней металлов или их сплавов, включающих по крайней мере один из следующих элементов: Ag, Cu, In, Ti, Au, Pt, Pd, после чего повторяют горячую прецизионную прокатку пластин до толщины не более 150 мкм при температуре от 30 до 150°С. Обеспечивается увеличение прочности фольги. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к сварочным и наплавочным материалам и может быть использовано для получения наплавленного металла и сварных швов на низко-, средне- и высоколегированных сталях и сплавах. В качестве порошков тугоплавкого химического соединения используют тугоплавкие химические соединения переходных металлов, выбранных из IV, V и VI групп Периодической системы, с углеродом, азотом или бором в виде порошкообразной смеси, содержащей нано-, ультра- и микроразмерные частицы. Сначала смешивают упомянутую смесь порошков со смешивающим агентом в соотношении от 2,3:1 до 4:1, полученную смесь продавливают через сито с образованием гранул размером не менее 500 мкм, просушивают их при температуре 250-300°C с обеспечением сухого остатка смешивающего агента 7-14% от массы полученных гранул, затем гранулы смешивают со шлакообразующим компонентом в виде флюса с образованием гранул с размерами в интервале 0,25-1,6 мм в соотношении от 1:2,3 до 1:0,75, нагревают полученную смесь в течение 5-10 мин при температуре Тх, выбираемой из соотношения Ттк>Тх≥Тш+50°C, где Ттк - температура плавления тугоплавкого химического соединения переходных металлов; Тш - температура плавления шлакообразующего компонента, после чего охлаждают, а закристаллизовавшийся шлак измельчают и разделяют на фракции с размером 50-100 мкм. Изобретение позволяет создать модификатор, обеспечивающий при его плавлении в реакционной зоне сварки высокую степень сохранности нано-, ультра- и микроразмерных частиц тугоплавких химических соединений в микрогранулах модификатора, а также повысить стабильность существования сварочной дуги. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение может быть использовано в медицине, косметологии и пищевой промышленности. Для получения наночастиц серебра сначала готовят водный раствор стабилизатора. В качестве стабилизатора используют β-циклодекстрин или натрия бис(2-этилгексил)сульфосукцинат. Концентрация β-циклодекстрина находится в диапазоне от 0,6⋅10-3 до 1,2⋅10-3 М. Концентрация натрия бис(2-этилгексил)сульфосукцината находится в диапазоне от 1,0⋅10-3 до 3,0⋅10-3 М. Затем в раствор стабилизатора вводят водный щелочной раствор флавоноида кверцетина. В полученный раствор при постоянном перемешивании вводят раствор диамминнитрата серебра до заданной молярной концентрации, составляющей от 0,4⋅10-3 до 4⋅10-3 М. Введение в раствор стабилизатора раствора кверцетина проводят до молярной концентрации кверцетина, равной 0,1 от вышеуказанной молярной концентрации диамминнитрата серебра. Изобретение позволяет получить наночастицы со средним размером 14-16 нм, снизить токсичность растворов наночастиц серебра для живых организмов и повысить концентрацию наночастиц в растворе. 4 з.п. ф-лы, 9 ил., 3 пр.

Изобретение относится к материаловедению и может быть использовано при изготовлении наполнителей для порошковой металлургии, красок, пластмасс, металлокерамики, клеевых и композиционных материалов. Многостенные углеродные нанотрубки (МУНТ) в виде порошка 14 размещают в реакторе 12, создают в его объёме предварительное разрежение и перемешивают нанотрубки реверсным вращением в пределах 270о. Затем производят нагрев нанотрубок с помощью печи пиролиза 15 и подают пары металлоорганического соединения алюминия - три-изобутилалюминия из ампулы 3, нагретой в печи испарителя 2 до 50-70 °С. В результате пиролиза при температуре 250-300 °С три-изобутилалюминий разлагается и образуется гибридный материал на основе МУНТ, поверхность которых декорирована дистанционно разделенными кристаллическими наночастицами алюминия. Летучие продукты пиролиза удаляют из реактора 12 по трубке 18 и собирают в ловушке. Упрощается технология получения гибридного материала на основе МУНТ, декорированных дистанционно разделенными кристаллическими наночастицами алюминия. Полученный товарный продукт не требует дополнительных промывок растворителями и сушки. 8 ил., 8 пр.

Изобретение относится к коллоидному раствору наносеребра в органическом растворителе - метилцеллозольве и способу его получения. Предложенный коллоидный раствор содержит метилцеллозольв и наночастицы серебра и имеет концентрацию наночастиц серебра от 0,29 до 0,30 мас.%, при следующем долевом распределении наночастиц серебра по размеру: 80% - наночастиц размером 50-75 нм, 20% - наночастиц размером от 80 нм до 100 нм. Коллоидный раствор наносеребра в метилцеллозольве получают реакцией восстановления раствора метансульфоната серебра, концентрацией 10-3 - 10-5 моль/л, в метилцеллозольве с использованием в качестве восстановителя эквимолярного количества аскорбиновой кислоты, при этом процесс осуществляют при перемешивании со скоростью 750-800 об/мин в среде метилцеллозольва при температуре 20-30°С. Изобретение обеспечивает получение коллоидного раствора наносеребра в метилцеллозольве, который стабилен более полугода и хранится в стеклянных пузырьках в темноте, а также имеет узкое распределение частиц по размерам, что обеспечивает расширение ассортимента получаемых полимерных материалов, модифицированных наносеребром. 2 н.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к способу получения нанокапсул витаминов группы B в каппа-каррагинане. Указанный способ характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин добавляют в суспензию каппа-каррагинана в изопропиловом спирте в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее добавляют петролейный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул витаминов группы В, а также увеличение их выхода по массе. 5 ил., 11 пр.

Изобретение относится к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, бензилпенициллина натриевой соли или амоксициллина, в каррагинане. Указанный способ характеризуется тем, что к 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества, к полученной суспензии добавляют небольшими порциями 0,5 г порошка антибиотика, затем добавляют 5 мл бутилхлорида, полученную суспензию нанокапсул отфильтровывают и сушат при 25°С. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул лекарственных препаратов группы пенициллинов, а также увеличение их выхода по массе. 4 ил., 5 пр.

Использование: для получения наноструктурированных металлуглеродных соединений. Сущность изобретения заключается в том, что коллоидный раствор золота, серебра смешивают с коллоидным раствором углерода (шунгита) в концентрации от 10 (углерод) : 1 (золото) : 1 (серебро) до 5 (углерод) : 3 (золото) : 3 (серебро) с последующим воздействием на смесь лазерного излучения (длительностью импульсов 100 нс, средней энергией от 5 до 20 Дж, частотой следования импульсов 20 кГц) в сканирующем режиме со скоростью от 100 мкм/с до 10 мм/с в течение 15 минут. Технический результат: обеспечение возможности получения наноструктурированных металлуглеродных соединений при изменении концентрации, времени и энергии воздействия. 5 ил.

Изобретение относится к технологии получения окислительно-стойких ультравысокотемпературных керамических композиционных материалов состава MB2/SiC, где М=Zr и/или Hf с нанокристаллическим карбидом кремния, которые могут быть использованы в качестве окислительно-, химически- и эрозионно-стойких материалов в потоках воздуха при температурах выше 2000°С, для создания авиационной, космической и ракетной техники, отопительных систем, теплоэлектростанций, а также в технологиях атомной энергетики, в химической и нефтехимической промышленности. Способ получения керамического композита MB2/SiC, где M=Zr и/или Hf, характеризующегося повышенной окислительной стойкостью, содержащего нанокристаллический карбид кремния в количестве от 10 до 65 об.%, заключается в том, что готовят раствор фенолформальдегидной смолы с массовым содержанием углерода от 10 до 40% в органическом растворителе, в котором диспергируют порошок диборида циркония и/или диборида гафния путем одновременного механического перемешивания и ультразвукового воздействия, после чего в полученную суспензию вводят тетраэтоксисилан с концентрацией от 1⋅10-3 до 2 моль/л и катализатор гидролиза тетраэтоксисилана, далее при перемешивании проводят гидролиз тетраэтоксисилана при температуре 0÷95°С гидролизующими растворами с образованием геля, затем осуществляют сушку полученного геля при температуре 0÷250°С и давлении 1⋅10-4÷1 атм до прекращения изменения массы, после чего осуществляют термическую обработку полученного ксерогеля при температуре от 400 до 800°С в течение 0,5÷12 ч в бескислородной атмосфере и при давлении ниже 1⋅10-4 атм с образованием высокодисперсного химически активного промежуточного продукта состава MB2/(SiO2-C), который далее подвергают высокотемпературному спеканию при температуре от 1600 до 1900°С в течение 0,1÷2 ч при механическом давлении от 20 до 45 МПа. Изобретение позволяет получать при относительно низких температурах и механическом давлении ультравысокотемпературные керамические композиты MB2/SiC, где M=Zr и/или Hf, обладающие повышенной окислительной стойкостью в токе воздуха, содержащие от 10 до 65 об.% нанокристаллического карбида кремния, без примесей посторонних фаз. 6 з.п. ф-лы, 6 ил., 4 пр.

Использование: для создания регенеруемого биосенсора. Сущность изобретения заключается в том, что способ включает в себя изготовление подложки биосенсора с массивом нанопроволок, формирующих фотонный кристалл, подготовку поверхности подложки для модификации аффинными молекулами, активацию поверхности аффинными молекулами, специфичными к целевым аналитам, присутствие целевых аналитов выявляют добавлением специфичных к ним детектирующих молекул, несущих на себе флуоресцентную метку, выбранную таким образом, чтобы максимум флуоресценции метки совпадал по длине волны с резонансной модой фотонного кристалла, приводя к увеличению интенсивности флуоресценции метки на этой длине волны, после чего поверхность биосенсора регенерируют для повторных использований. Технический результат: обеспечение возможности многократного использования биосенсора. 13 з.п. ф-лы, 3 ил.
Наверх