Тренажер оперативного и эксплуатационного персонала на основе моделей виртуальной реальности трансформаторной подстанции

Изобретение относится к области информационных технологий и вычислительной техники, а именно к виртуальным тренажерам персонала на основе моделирования подстанций в трехмерном виртуальном пространстве с обеспечением интерактивного взаимодействия оперативного и эксплуатационного персонала подстанций заказчика в целях его обучения методам безопасного проведения работ, в том числе в нештатных ситуациях и способам тренировки с использованием указанных виртуальных тренажеров. Тренажер включает ПК с машиночитаемым носителем, содержащим логическую часть тренажера и графическую трехмерную оболочку, подключенные к ПК периферийные устройства для навигации в виртуальной среде, включающие шлем виртуальной реальности, инфракрасную камеру, джойстик, треккеры мелкой моторики и всенаправленную беговую дорожку, при этом логическая часть тренажера включает связанные между собой посредством локального программного транспортного интерфейса коммутационный модуль, модуль защиты, модуль расчета режима и модуль оценки. Способ тренировки заключается в визуализации на экране шлема виртуальной реальности, графическую трехмерную оболочку виртуальной подстанции, получении от логической части тренажера бланка по оперативным переключениям, осуществлении оперативных переключений органов управления в виртуальной среде посредством периферийных устройств управления, подключенных к ПК, в соответствии с полученным бланком по оперативным переключениям, отслеживании посредством ИК-камер изменения положения тела оператора, отслеживании посредством треккеров мелкой моторики изменения положения рук, передаче через протоколы взаимодействия информации об изменениях положения тела, рук и об оперативных переключениях от треккеров положения и ИК-камеры в логическую часть тренажера, пересчете электрического режима схемы подстанции посредством встроенного в логическую часть тренажера математического алгоритма, после пересчета режима, данные о положении коммутационных аппаратов и показания приборов передают в графическую оболочку тренажера и отображают на экране шлема виртуальной реальности, и оценке правильности действий оператора. Таким образом, достигается повышение качества обучения персонала за счет обеспечения максимального приближения к реальным оперативным переключениям и условиям на энергообъекте. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к области информационных технологий и вычислительной техники, а именно к виртуальным тренажерам персонала на основе моделирования подстанций в трехмерном виртуальном пространстве с обеспечением интерактивного взаимодействия оперативного и эксплуатационного персонала подстанций заказчика в целях его обучения методам безопасного проведения работ, в том числе в нештатных ситуациях и способам тренировки с использованием указанных виртуальных тренажеров.

Наиболее близким аналогом предлагаемого решения является система моделирования электрической подстанции для обучения операторов (патент Китая №203165263, 28.08.2013), включающая в себя систему управления, систему динамического захвата движения и систему отображения. Система управления включает в себя управляющий компьютер, который может принимать и передавать сигналы и может выполнять динамическое моделирование движения в соответствии с принимаемыми сигналами. Система отображения включает в себя шлем, используемый для отображения виртуальных сцен. Динамическая система захвата движения и система отображения связаны с системой управления. Управляющий компьютер может выполнять динамическое моделирование движения в соответствии с сигналами, полученными от динамической системы захвата движения и отображения виртуальных сцен на экране перед операторами в режиме реального времени.

Недостатком ближайшего аналога является упрощенная логическая часть тренажера, которая не представляет возможности математического моделирования энергообъекта, доступные в патентуемой системе. В частности, в аналоге не представлены возможности моделировании релейной защиты и автоматики энергообъекта, моделирования и расчета электрического режима.

Задача, на решение которой направлено предлагаемое решение, заключается в создании инструмента для подготовки и тренировки навыков оперативного и ремонтного персонала с целью снижения аварийности и предотвращения травматизма при работе в электроустановках с использованием современных технологий создания виртуальной реальности.

Технический результат предлагаемого изобретения заключается в повышении качества обучения персонала за счет обеспечения максимального приближения к реальным оперативным переключениям и условиям на энергообъекте. Предлагаемый тренажер позволяет моделировать реальное оборудование, проводить тренировки на моделях существующих электрических подстанциях, тренировки, связанные с проверкой рабочего места, осмотром состояния оборудования (например, визуальная проверка изоляторов на наличие сколов и трещин), а также тренировки, отражающие реальные временные затраты на перемещение по подстанции и совершение переключений, за счет наличия системы навигации и анализа действия пользователя в виртуальной среде.

Заявленный технический результат достигается за счет предлагаемого способа тренировки оперативного и эксплуатационного персонала трансформаторной подстанции на основе моделей виртуальной реальности, загруженных на ПК в виде ядра с логической частью тренажера и графической трехмерной оболочкой тренажера, содержащей виртуальную модель трансформаторной подстанции, визуализируют на экране шлема виртуальной реальности, подключенного к ПК, графическую трехмерную оболочку виртуальной подстанции, загруженной в ПК, принимают от логической части тренажера, загруженной в ПК, бланк инструкции выполнения тренировки, отображаемый на дисплее шлема, осуществляют оперативные переключения органов управления в виртуальной среде посредством устройств управления, подключенных к ПК, в соответствии с полученной инструкцией, отслеживают посредством ИК-камер изменение положения тела оператора, информацию об изменениях положения тела и об оперативных переключениях передают через протоколы взаимодействия в логическую часть тренажера, после пересчета режима, данные о положении коммутационных аппаратов и показания приборов передают в графическую оболочку тренажера и отображают на экране шлема виртуальной реальности.

Предлагаемый способ тренировки осуществляется посредством тренировочной станции, включающей ПК с машиночитаемым носителем, содержащим логическую часть тренажера и графическую трехмерную оболочку, клавиатуру, мышь, джойстик, шлем виртуальной реальности, а также периферийные устройства навигации пользователя в виртуальной среде, подключенные к ПК, состоящие из инфракрасной камеры, треккеров мелкой моторики рук и всенаправленной беговой дорожки.

Благодаря наличию системы навигации пользователя в виртуальной среде обратной связи с пользователем обеспечивается возможность создавать такие визуальные эффекты в виртуальной среде, как подсветка органов управления в виртуальной среде при наведении пользователем на него указателя, а также имитация пожара или электрической дуги, возникающих при некоторых ошибочных действиях оперативного персонала. Указанная особенность позволяет проводить наглядные тренировки персонала в максимальном приближении к реальным оперативным переключениям на энергообъекте, что повышает качество обучения оперативного и эксплуатационного персонала трансформаторной подстанции.

Далее решение поясняется ссылками на чертежи, на которых приведено следующее:

Фиг. 1 - принципиальная схема взаимодействия блоков системы и пользователя.

Фиг. 2 - блок-схема тренировочной станции.

Фиг. 3 - блок-схема алгоритма проведения тренировки.

Фиг. 4 - общий вид тренировочной станции.

На фиг. 1 представлена общая схема взаимодействия между подсистемами: логической частью тренажера (ЛЧТ) и 3-D оболочкой. Ввиду того, что создаваемая система является интеграцией двух подсистем: ЛЧТ и 3-D оболочки, то действия человека, выполняемые в последней (которая является интерфейсом для пользователя), передаются на исполнение в ЛЧТ и их последующую фиксацию в ней. Информационный обмен между подсистемами будет осуществляться посредством локального программного транспортного интерфейса (API СОМ) и основан на транзакционной модели. Все элементы, представленные в визуализации и доступные для управления, будут иметь свой уникальный идентификационный номер (ИН). К таким элементам будут относиться органы управления оборудования в первичной цепи, ключи управления вторичных цепей, измерительные устройства, средства индивидуальной защиты и т.д. За каждым элементом будет закреплен определенный набор доступных действий, которые сможет совершать пользователь в ходе тренировки. Транзакцией называется обмен пакетами данных между подсистемами. Алгоритм обмена изображен на фиг. 3.

В соответствии с фиг. 3 последовательность информационных потоков при функционировании системы следующая.

Блок 1. Пользователь для начала работы в многопользовательском режиме запускает приложение «Тренажер», осуществляет выбор соответствующего режима и подлежащий отработке сценарий тренировки.

Блок 2. После указанных выше действий пользователя в качестве выходной информации от ЛЧТ и, соответственно, входной для графической 3-D оболочки на данном этапе выступает сцена обучения (виртуальная подстанция) и заложенный сценарий тренировки.

Далее блоки 3 и 4 соответствуют прохождению первой транзакции между ЛЧТ и 3-D оболочкой с целью запуска симуляции для данного пользователя. Это действие выполняется всегда при запуске системы на тренировочной платформе и является неотъемлемым этапом для начала работы.

Блок 3. После выгрузки сцены обучения и заложенного сценария в графическую 3-D оболочку ЛЧТ посредством сетевого интерфейса UDP проводит опрос параллельно работающих тренировочных платформ на предмет того, запущены ли уже симуляции их. Если симуляции уже запущены, то их выполнение временно блокируется на период полной загрузки (следующего Блока 4) на данной тренировочной платформе. Блокировка потока выполнения предусмотрена для того, чтобы корректно выгрузить данные в запускаемую симуляцию о текущем состоянии оборудования, доступного для управления, и таким образом обеспечить синхронизацию данных на параллельных симуляциях, часть из которых могла быть запущена раньше. В случае если на нескольких платформах одновременно начался запуск симуляции, то выполнение первых транзакций выполняется поочередно.

Блок 4. После блокировки потока выполнения (если она имеет место), 3-D оболочка получает от ЛЧТ ИН всех элементов, участвующих в запущенной симуляции и доступных для управления, и данные о первоначальном состоянии элементов. После выполнения данного действия тренировочная платформа готова к работе и проведению тренировки.

Далее непосредственно начинается процесс тренировки. Алгоритм, который реализуется при выполнении любого действия пользователем, описывается блоками 5, 6, 7, 8. Так как тренировка является совокупностью последовательных действий, то информационный обмен между подсистемами в ходе нее полностью описывается этими блоками.

Блок 5. Пользователь выполняет действие в графическом интерфейсе, например, поворачивает ключ управления линейного силового выключателя на отключение.

Блок 6. От 3-D оболочки в ЛЧТ проходит транзакция с информацией о типе воздействия на элемент с ИН N (ключ управления).

Блок 7. Отклик ЛЧТ на совершенное воздействие: заносится изменение в коммутационную модель электрической части подстанции, фиксируются изменения во вторичных цепях (сигнализации, управления и т.д.), осуществляется пересчет электрического режима, изменившегося после изменения состояния системы.

Блок 8. Осуществляется обратная транзакция от ЛЧТ в 3-D Оболочку: передача данных о визуализации по элементу N (например, после отключения выключателя необходимо изменить сигнализацию на щитах пункта управления, показания измерительных приборов, положение и т.д.).

Блок 9. Условно отображает все множество действий, выполняемых пользователем в ходе тренировки, которые также описываются блоками 5-8.

Блок 10. После завершения тренировки пользователем выполняется завершение симуляции. При этом ЛЧТ определяет число правильных и не правильных действий при совершении тренировки и оценивает их в баллах с соответствующими весовыми коэффициентами. Если достигнуто пороговое число баллов, то тренировка прошла успешно, иначе - неуспешно.

При осуществлении аварийных тренировок, когда при проведении оперативных переключений происходит отказ либо авария по не зависящим от пользователя причинам (момент отказа либо аварии определен заранее и заложен в алгоритм тренировки), предполагается реализовать следующий алгоритм. Так как визуализация этого события предполагает соответствующую транзакцию от ЛЧТ в 3-D оболочку, а генерация транзакций от ЛЧТ не предусмотрена, то с определенной дискретностью, 3-D оболочка будет параллельно посылать запросы в ЛЧТ на предмет наступления аварийного события.

На фиг. 4 изображен общий вид тренировочной подстанции и указаны следующие элементы:

11. Шлем виртуальной реальности.

12. Треккер положения рук.

13. ИК-камера.

14. Всенаправленная беговая дорожка.

15. Системный блок рабочей станции.

16. Монитор рабочей станции тренажера.

Тренировочная станция представляет собой персональный компьютер с машиночитаемым носителем, содержащим программное обеспечение, разделенное на два функциональных ядра: логическую часть тренажера (ЛЧТ) и графическую 3D оболочку. Также на компьютер устанавливаются необходимые программы для связи периферийного оборудования в единый комплекс. Неотъемлемой частью тренажера является шлем виртуальной реальности, являющийся средством отображения виртуальной реальности. Для отслеживания локальных перемещений тренируемого персонала, используется ИК-камера.

Набор периферийных устройств включает в себя:

- клавиатура служит для навигации по тренировочной станции;

- мышь - служит для навигации по тренировочной станции;

- шлем виртуальной реальности - служит для отображения 3D-оболочки;

- инфракрасная камера - служит для отслеживания положения тела и движений тренируемого и передачи информации в 3D-оболочку;

- джойстик служит для навигации пользователя в виртуальной среде;

- всенаправленная беговая дорожка.

Коммутационный модуль является подсистемой логической части тренажера и отвечает за хранение информации о топологии электрической схемы энергообъекта, текущем состоянии элементов схемы, их расчетных характеристиках. Также коммутационный модуль выполняет анализ схемы с точки зрения правильности топологии при ее построении и отладке.

Модуль защиты является подсистемой логической части тренажера и выполняет анализ схемы с точки зрения возможности локализации неисправности, возникшей в узле или зоне. Анализ выполняется автоматически, когда принципиальная электрическая схема сети открывается в приложении «Аниматор схем». При этом создаются списки зон защит, узлов схемы и взаимных блокировок, доступные для просмотра пользователем. Ввод информации о повреждении элемента приводит к отключению участка сети, что также может быть использовано для сверки схемы.

Система расчета режима представляет собой встроенный в логическую часть тренажера алгоритм, предназначенный для расчета установившегося электрического режима сети переменного тока моделируемого объекта.

Перед началом тренировки необходимо загрузить логическую часть тренажера и графическую оболочку (с помощью клавиатуры и мыши), настроить работу шлема виртуальной реальности. Эти функции может выполнять инструктор или администратор системы. Тренируемому необязательно обладать навыками подготовки системы к работе. Надев шлем виртуальной реальности, пользователь начинает тренировку на виртуальной модели трансформаторной подстанции. В предварительно загруженной логической части тренажера записана соответствующая тренировке эталонная последовательность действий, называемая сценарием тренировки. Сценарий содержит правильную последовательность действий, которые должен выполнить пользователь в ходе тренировки. Основным местом проведения тренировки является:

- общеподстанционный пункт управления, содержащий щиты управления;

- открытое распределительное устройство;

- закрытое распределительное устройство;

- другие производственные помещения энергообъекта, задействованные в процессе переключений.

В ходе тренировки пользователь взаимодействует с органами управления в виртуальной среде. Информация об изменениях передается через протоколы взаимодействия в логическую часть тренажера, и, после пересчета режима, данные о положении коммутационных аппаратов, показания приборов передаются назад в графическую оболочку тренажера.

Для совершения переключений пользователю необходимо подойти к органу управления на расстояние в виртуальной реальности, не более чем эквивалентное расстоянию вытянутой руки в реальности. Перед глазами пользователя в центре изображения всегда присутствует красный квадрат (прицел), используемый для взаимодействия с элементами графической оболочки. Для осуществления взаимодействия с элементом графической оболочки пользователю взглядом необходимо навести на него прицел. При наведении прицела на органы управления, включается их подсветка, помогающая пользователю с выбором оборудования. Подсветка представляет собой появление красной линии по контуру выбранного элемента, чем достигается его выделение на фоне текстур. Если элемент выбран верно, то пользователь нажимает на клавишу джойстика, чем и осуществляет воздействие на этот элемент.

Запуск системы заключается в загрузке необходимого программного обеспечения и настройки периферийных устройств. После запуска системы и настройки начинается тренировка. Отображение виртуальной среды осуществляется посредством шлема виртуальной реальности. Процесс тренировки заключается в выполнении пользователем действий в соответствии с заложенным сценарием обучения. Сценарий тренировки составляется в соответствии с нормативными документами по проведению оперативных переключений (бланками по оперативным переключениям). В ходе тренировки пользователю необходимо перемещаться по модели подстанции, воздействовать на органы управления, использовать средства индивидуальной защиты, вывешивать запрещающие плакаты и т.д. Для перемещения и воздействия на элементы пользователь использует джойстик, всенаправленную беговую дорожку, шлем виртуальной реальности, треккеры мелкой моторики рук и ИК-камеру. Эти инструменты являются главными средствами навигации. Пользователь сам визуально определяет свое положение в виртуальном пространстве. Можно выделить четыре вида двигательной активности пользователя:

1. Движения рук (мелкая моторика рук)

Здесь для распознавания используются треккеры мелкой моторики рук (на шлеме виртуальной реальности закрепляются устройства жестового управления, распознающие движения рук в поле зрения пользователя). Также для реализации взаимодействия с элементами графической оболочки может использоваться джойстик, с помощью рычагов которого осуществляется перемещение пользователя в пространстве, а с помощью кнопок - взаимодействие с выбранным виртуальным объектом.

2. Крупные движения тела (движение корпуса)

Этот вид движений отслеживается ИК-камерой, синхронизированной со шлемом виртуальной реальности. ИК-камера калибруется и фиксирует начальное положение шлема виртуальной реальности в пространстве. Далее во время тренировки ИК-камера отслеживает отклонение положения шлема в пространстве от начального.

3. Перемещения в пространстве шагами

Для реализации этого движения в виртуальной реальности используется всенаправленная беговая дорожка. Джойстик может использоваться для перемещения (имитация шагов при нажатии кнопки на джойстике) при отсутствии всенаправленной беговой дорожки или в дополнение к ней.

В любой момент тренировки пользователь может открыть бланк переключений для понимания последовательности выполнения действий посредством зарезервированной для этой функции кнопки на джойстике. Бланк появляется перед глазами пользователя в графической оболочке. Бланк переключений является оперативным документом, в котором указано, какое переключение производится, и приведен перечень действий, необходимых для выполнения в ходе переключений. В ходе тренировки программа оценивает правильность выполняемых действий и после окончания тренировки выдает отчет о проделанных операциях. Оценка осуществляется в специально созданном для этого в логической части тренажера модуле оценки. В него запрограммирована эталонная последовательность действий тренировки (ее сценарий). В ходе тренировки происходит описанный выше информационный обмен между ЛЧТ и графической частью. ЛЧТ передает информацию о выполненных пользователем действиях в модуль оценки и сравнивает получаемую последовательность с эталонной. При совпадении фактического и эталонного действий пользователю начисляются баллы. Их количество зависит от важности выполненного действия: различным действиям присваиваются соответствующие весовые коэффициенты. В результате формируется отчет фактических действий пользователя и его оценка в баллах. Анализ отчета позволяет определить готовность тренируемого к работе на реальном объекте и допущенные ошибки и недочеты.

Основным преимуществом разрабатываемого тренажера является наличие визуальной составляющей - графической 3D оболочки и ЛЧТ, работающие совместно. Тренировки, проводимые на разрабатываемом тренажере, будут наглядными и максимально приближенными к реальным оперативным переключениям на энергообъекте. Наличие графической 3D оболочки и использование технологий виртуальной реальности позволяет:

- моделировать реальное оборудование, проводить тренировки на моделях существующих электрических подстанциЙ;

- проводить тренировки, связанные с проверкой рабочего места, осмотром состояния оборудования (например, визуальная проверка изоляторов на наличие сколов и трещин), что невозможно на существующих тренажерах по оперативным переключениям;

- проводить тренировки, отражающие реальные временные затраты на перемещение по подстанции и совершение переключений;

- создавать такие визуальные эффекты, как пожар или электрическая дуга, возникающие при ошибочных действиях оперативного персонала.

Тренажер предназначен для эксплуатации в центрах подготовки персонала электросетевых компаний и крупных потребителей электрической энергии. Тренажер может быть использован как для подготовки дежурных электромонтеров подстанции, так и для тестирования оперативного персонала. Тренируемый персонал заранее оповещается о сценарии и целях проводимой тренировки (например, тренировки по выводу в ремонт трансформатора). Начав тренировку, персонал открывает бланк переключений в виртуальной среде и начинает последовательно выполнять указанные в бланке действия. За ходом тренировки следит контролирующий персонал, при необходимости дающий советы по взаимодействию с тренажером. После окончания тренировки программой создается протокол, указывающий ошибки (нарушение последовательности действий, невыполнение действия, выполнение лишнего действия или неправильное действие), совершенные в ходе работы.

Области использования системы: подготовка нового персонала и аттестация, повышение квалификации работающего персонала, проведение противоаварийных тренировок.

1. Тренажер оперативного и эксплуатационного персонала трансформаторной подстанции на основе моделей виртуальной реальности, включающий ПК с машиночитаемым носителем, содержащим логическую часть тренажера и графическую трехмерную оболочку, подключенные к ПК периферийные устройства для навигации в виртуальной среде, включающие шлем виртуальной реальности, инфракрасную камеру, джойстик, треккеры мелкой моторики и всенаправленную беговую дорожку, при этом логическая часть тренажера включает связанные между собой посредством локального программного транспортного интерфейса

коммутационный модуль, выполненный с возможностью хранения информации о топологии электрической схемы энергообъекта, текущем состоянии элементов схемы, их расчетных характеристиках, анализа схемы с точки зрения правильности топологии при ее построении и отладке,

модуль защиты, выполненный с возможностью анализа схемы сети на наличие неисправностей,

модуль расчета режима, выполненный с возможностью расчета установившегося режима сети переменного тока моделируемого объекта,

модуль оценки, выполненный с возможностью оценки сравнения выполняемых пользователем действий с последовательностью действий, содержащейся в бланке по оперативным переключениям.

2. Способ тренировки оперативного и эксплуатационного персонала трансформаторной подстанции, осуществляемый с помощью тренажера по п. 1, характеризующийся тем, что включает этапы, на которых

визуализируют на экране шлема виртуальной реальности, подключенного к ПК, графическую трехмерную оболочку виртуальной подстанции, загруженной в ПК,

принимают от логической части тренажера, загруженной в ПК, и отображают на экране шлема бланк по оперативным переключениям,

осуществляют оперативные переключения органов управления в виртуальной среде посредством периферийных устройств управления, подключенных к ПК, в соответствии с полученным бланком по оперативным переключениям,

отслеживают посредством ИК-камер изменение положения тела оператора,

отслеживают посредством треккеров мелкой моторики изменения положения рук,

информацию об изменениях положения тела, рук и об оперативных переключениях от треккеров положения и ИК-камеры передают через протоколы взаимодействия в логическую часть тренажера,

пересчитывают электрический режим схемы подстанции посредством встроенного в логическую часть тренажера математического алгоритма,

после пересчета режима, данные о положении коммутационных аппаратов и показания приборов передают в графическую оболочку тренажера и отображают на экране шлема виртуальной реальности,

отслеживают правильные и неправильные действия при совершении тренировки и оценивают их в баллах с соответствующими весовыми коэффициентами посредством логической части тренажера.



 

Похожие патенты:
Изобретение относится к способам обучения детей в игровой форме. Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении эффективности обучения ребенка и оценки усвоения им информационного материала за счет интерактивных игровых форм с дозированным увеличением двигательной активности и благоприятного эмоционального фона.

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения состоит из базы данных первичной информации об исследуемом объекте, которая является входом системы, модуля обработки параметрических данных объекта, модуля обработки физических характеристик объекта, модуля механических свойств объекта, модуля моделирования динамических свойств объекта, модуля интегральной оценки и принятия решений, модуля конструктора, модуля производственного инвентаря и модуля визуализации итогового результата, являющегося выходом системы.

Изобретение относится к средствам обучения персонала нефтегазодобывающих предприятий и может быть использован для обучения, контроля знаний по эффективному и безопасному ведению технологических процессов добычи нефти и газа.

Программно-аппаратный тренажер аппаратуры внутренней связи коммутации и управления (ПАТ АВСКУ) предназначен для обучения принципам работы с комплексом аппаратуры внутренней связи коммутации и управления АВСКУ, а также АВСКУ совместно с радиостанциями и для обеспечения совместной работы с комплексом учебно-тренировочных средств (КУТС) в части речевого обмена и дистанционного управления радиостанциями (PC).

Изобретение относится к средствам инновационных образовательных технологий обучения безопасности производства с применением информационно-коммуникационных технологий и может быть использовано в различных производственных структурах и учебных центрах любой формы собственности персоналом без специальной предварительной подготовки.

Изобретение относится к средствам организации безопасного производства. Технический результат - повышение эффективности систем обеспечения безопасности производства и систем электронного обучения.

Изобретение относится к системе сетевой интеллектуальной графики для обеспечения безопасности производства. Технический результат заключается в повышении эффективности формирования графических образов для обеспечения унификации их поиска.

Изобретение относится к автоматизированным средствам контроля и тренинга профессионально важных психофизиологических качеств работников и может быть использовано при автоматизированном определении профессиональной пригодности, а также для совершенствования психофизиологических качеств инженерно-технических работников предприятия.

Изобретение относится к области медицины, к разделу неврологии, и может найти применение в неврологической и нейрореабилитационной клинике при проведении восстановительного обучения с больными неврологической клиники, имеющими различные нарушения зрительного гнозиса.

Изобретение относится к тренажерному устройству, и, в частности, к приобретению навыков правильной позиции рук при мануальном контакте с рабочей поверхностью - внешней клавиатуры, активного дисплея монитора, планшетного компьютера, пульта управления и т.д.

Изобретение относится к способу симуляции взаимодействия с твердыми телами. Для симуляции взаимодействия с твердыми телами и их обработки бормашиной с имитацией тактильной обратной связи реализуют на ЭВМ обнаружение столкновений между моделируемым инструментом и объектом, представленными в виде непрерывных равных по размеру массивов вокселей, определяют положение инструмента на поверхности объекта, для чего выбирается направление смещения инструмента в желаемую точку, проверяется, что при смещении образа инструмента на один воксель не будет проникновения инструмента в поверхность, фиксируют инструмент, если попытки смещения без проникновения исчерпаны, производят имитацию обработки материала бормашиной, рассчитывают объем материала, который может быть удален каждым вокселем поверхности бора, ищут новую точку для перемещения бора с допущением проникновения, определяют оставшийся объем материала, обновляют визуальное представление моделируемых взаимодействий, вычисляют определенным образом тангенциальную силу и силу обратной связи для генерации импульса со стороны гаптик-устройства для имитации тактильного взаимодействия. Обеспечивается реалистичность симуляции работы инструмента. 5 ил.

Процедурный тренажер с системой инженерной поддержки технической эксплуатации воздушных судов содержит тренажный комплекс с автоматизированной системой тренажной подготовки в учебном классе с автоматизированными рабочими местами (АРМ) обучаемых на базе персональных компьютеров с 3D-моделями воздушного судна и его узлов и агрегатов, систему инженерной (информационной) поддержки специалистов инженерно-авиационной службы, размещенную в местах технической эксплуатации воздушных судов с портативными АРМ специалистов на базе планшетных компьютеров. Обеспечивается теоретическая и практическая подготовка специалистов инженерно-технического состава авиации. 1 ил.
Изобретение относится к способам иллюстративного тестирования дошкольников в игровой форме. Одновременно или после озвучивания вопроса на игровом поле формируют визуально-информационные образы как иллюстрации к вопросу теста, где один из образов является правильным ответом на вопрос. Образы перемещаются по игровому полю по заданной программе, не пересекаясь друг с другом. Испытуемый после прослушивания и оценки вопроса выполняет перемещения по игровому полю в площадь визуально-информационного образа, который он считает правильным ответом, не попадая в зоны - неправильные ответы. Образы с неправильным ответом затрудняют перемещение испытуемого. Видеокамера фиксирует перемещения испытуемого и зон и передает данные в программно-аппаратный комплекс для автоматической обработки, анализа и генерирования звукового и/или светового условного сигнала, указывающего правильность ответа. В зависимости от подготовленности испытуемого физическую нагрузку, режим теста варьируют программно изменением площади, числа и скорости перемещения образов-иллюстраций. Техническим результатом изобретения является повышение эффективности обучения и оценки усвоения информационного материала.

Изобретение относится к горному делу и предназначено для определения пространственного положения буровой машины. Тренажер глазомерного определения положения буровой машины относительно плоскости забоя, состоит из пластины с угловой шкалой, имитатора буровой машины, включающего буровой молоток с буровой штангой, выполненной телескопической с возможностью соединения с шаровой пятой шарового шарнира, закрепленного на плоскости забоя, присоединенную к буровому молотку шарнирно телескопическую опору, соединенную с основанием, а также размещенного на верхней площадке бурового молотка кожуха, снабженного источником света и угломерной шкалой в виде полукруга с отвесом, при этом источник света расположен перпендикулярно оси бурового молотка, пластина выполнена плоской и установлена перпендикулярно плоскости забоя, а угловая шкала, размещенная на пластине, проградуирована по формуле: где Lβ - длина отрезка угловой шкалы, отмеряемого от плоскости забоя, соответствующая величине горизонтального угла β;Lшт - длина от шарового шарнира до оси источника света;L - длина от шарового шарнира до пластины с угловой шкалой;β - величина горизонтального угла, град.Технический результат заключается в упрощении конструкции. 2 ил.

Изобретение относится к анализу техники пилотирования по данным бортовых устройств регистрации параметрической полетной информации. Для анализа техники пилотирования осуществляют формализацию курсов боевой подготовки определенным образом, разрабатывают и вводят в базу данных методические схемы упражнений, разрабатывают полетные задания на основе формализованного курса и методических схем, разрабатывают модели идентификации для различных элементов полета, считывают зарегистрированную информацию с бортового устройства регистрации, производят идентификацию элементов полета, сравнивают результаты идентификации с данными полетного задания, оценивают полноту и последовательность его выполнения, оценивают отдельные элементы полета и полет в целом, анализируют технику пилотирования с выявлением нарушений методики выполнения элементов полета, записывают результаты в базу данных статистики, получают обобщенные данные о летной подготовке экипажей авиационной части. Обеспечивается достоверность результатов оценки и анализа техники пилотирования. 4 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения содержит по крайней мере один программно-аппаратный комплекс, поддерживающий в режиме диалога автоматизированные циклы обучения и контроля знаний обучающихся, который выполнен в виде управляющего модуля вычислительной системы, снабженного программным обеспечением системы и имеющего информационные входы и выходы, модуль индивидуального и/или группового обучения, при этом модуль индивидуального и/или группового обучения содержит не менее одного модуля объектов, который включает в себя не менее одного источника питания и не менее одного электронного прибора, один из входов которого соединен с соответствующим выходом источника питания, при этом каждый электронный прибор имеет разъемы для возможности подключения их между собой, а второй и последующие электронные приборы имеют возможность подключения к соответствующим выходам соответствующих источников питания, причем каждый электронный прибор и источник питания имеют органы управления с анимационно-графическим материалом, программными кодами и интерактивными зонами, соединенные двунаправленными линиями связи с информационными входами и выходами управляющего модуля вычислительной системы. Техническим результатом изобретения является повышение эффективности мероприятий обучения, особенно при поступлении в эксплуатацию новых и модернизированных образцов техники, в целях обеспечения точного и безошибочного выполнения ответственных операций обслуживающим персоналом в процессе эксплуатации (ремонта и технического обслуживания) современных сложных электронных приборов и технических систем. 1 ил.

Заявленное изобретение относится к области образовательных систем с аудиовизуальными и компьютерными технологиями и может быть использовано для ведения мониторинга учебной деятельности преподавателей с целью улучшения качества преподавания. В способе, включающем использование компьютерной сети, сформированной из центрального компьютера, сообщенного через каналы связи со специализированными персональными компьютерами, создание электронных карт с блоками баз данных на каждого субъекта, одна из которых является общей с блоками «Личная карта субъекта» с блоком основной информации о субъекте и «Связь со специализированной картой субъекта», и предназначены для хранения в картотеке общей базы данных субъектов в центральном компьютере, другие специализированные электронные карты распределены по модулям: «Картотека специализированных карт субъектов», специализированная карта субъекта которой включает блок «Субъект», с полями только основной информации о субъекте, блок «Мониторинг базы данных субъектов», в котором создают поля для мониторирования базы данных субъектов со структурированием всех записей по полям, модуль «Наблюдения или контроль за деятельностью субъектов», включающий блок для слежения за субъектом после каждого определенного периода времени его деятельности и блок для формирования базы данных состояния деятельности каждого субъекта, причем все данные в этом модуле автоматически систематизируются, которые предназначены для хранения в специализированном персональном компьютере, и модуль «Результаты мониторинга базы данных деятельности субъектов», согласно изобретению в качестве субъекта используют базу данных преподавателя, в личную карту которого на центральном компьютере дополнительно вводят блоки базы данных: «Количество и название дисциплин», «Объем аудиторных занятий по дисциплинам», «Мониторинг базы данных преподавателя в виде сводной таблицы «Учебная нагрузка», а в качестве блока для слежения за преподавателем после каждого определенного периода времени его деятельности и блока для формирования базы данных состояния деятельности каждого преподавателя используют блоки: «Дисциплина», «Электронные журналы посещаемости обучаемых», «Промежуточная аттестация обучаемых» и «Электронные экзаменационные и зачетные ведомости», которые по каналам связи передают на специализированный персональный компьютер и распределяют по модулям, блоки: «Количество и название дисциплин», «Объем аудиторных занятий по дисциплинам» и «Мониторинг базы данных преподавателя в виде сводной таблицы «Учебная нагрузка» для каждого преподавателя помещают в модуль «Картотека специализированных карт базы данных преподавателей», а блоки: «Дисциплина», «Электронные журналы посещаемости обучаемых», «Промежуточная аттестация обучаемых» и «Электронные экзаменационные или зачетные ведомости» по соответствующей дисциплине и преподавателю - в модуль «Наблюдения или контроль за учебной работой преподавателей», при этом модуль «Результаты мониторинга базы данных деятельности преподавателей» помещают на центральном компьютере и создают в нем блоки: «Обработка результатов контроля, получение исходных данных для программы ЭВМ», «Программа для ЭВМ» и «Ранжирование результатов учебной работы преподавателя», далее по мере прохождения учебного процесса преподаватель вводит информацию в блоки: «Промежуточная аттестация обучаемых» и «Электронные зачетные или экзаменационные ведомости», находящиеся в специализированном персональном компьютере, которые по каналам связи поступают на центральный компьютер в модуль «Результаты мониторинга базы данных деятельности преподавателей», на блок «Обработка результатов контроля, получение исходных данных для программы ЭВМ» и для контроля полученных данных используют блок «Программа для ЭВМ» для обработки вводимой информации с блоков базы данных преподавателя с целью определения: индивидуальных коэффициентов качества учебной работы преподавателя, коэффициентов качества усвоения дисциплины. Заявленный способ применяется для расширения функциональных возможностей организации и ведения мониторинга базы данных субъектов с целью повышения объективности и точности оценки качества деятельности, в частности учебной работы в вузе или в среде кампуса, где несколько корпусов образуют учебный комплекс и взаимосвязаны через локальную связь. 2 ил., 1 табл.

Изобретение относится к области медицины, в частности к разделу неврологии и клинической психологии, и может найти применение в неврологической и нейрореабилитационной клинике при восстановительном обучении больных с нарушениями пространственного восприятия. Создание пособия для восстановления пространственного восприятия осуществляют путем использования носителя изображений в виде частей объекта, различающихся на левые и правые части объекта. Причем в качестве носителя формируют карточки восьмигранной и круглой формы, на которые наносят изображения в виде предметов, объектов с выделенной левой или правой частью и предметов и частей объектов, различающихся на левые и правые предметы и части объектов. При этом карточки восьмигранной и круглой формы размещают в карманах, выполненных в полях предварительно изготовленных картонных или пластмассовых или кожаных обложек. А карманы выполняют таким образом, чтобы карточки устанавливались с возможностью возвратно-поступательного движения через отверстия карманов, а на обратную сторону карточки наносят сведения о пространственной ориентации объекта или предмета или части объекта, который изображен на них. Способ обеспечивает создание простого в исполнении и использовании пособия, позволяющего формировать неограниченное количество заданий и занятий по восстановлению пространственного восприятия. 3 ил.

Варианты осуществления изобретения относятся к способу для автоматической оценки хода тренировочного упражнения, содержащему обеспечение (10) множества данных о местоположении по меньшей мере для одного перемещающегося объекта (120, 120а, 120b), участвующего в тренировочном упражнении, и обеспечение (20) по меньшей мере одной заранее определенной цели упражнения. Множество данных о местоположении сравнивают с целью (30) упражнения и оценивают (40) ход тренировочного упражнения на основе результата сравнения (30). 4 н. и 22 з.п. ф-лы, 4 ил.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. Это достигается тем, что в устройстве для моделирования взрывоопасной ситуации, содержащем макет взрывоопасного объекта, установленный на стойках, с установленным в нем инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, размещенного в испытательном боксе, при этом макет оборудован транспортной и подвесной системами, а защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, а также резинового и перкалевого слоев, макет взрывоопасного объекта оснащен исследуемым на стенде объектом: взрывозащитным элементом, установленным над отверстием в верхней части макета, который состоит из бронированного металлического каркаса с бронированной металлической обшивкой и наполнителем - свинцом, а в верхней части макета, у отверстия, симметрично относительно его оси, заделаны четыре опорных стержня, телескопически вставленные в неподвижные патрубки-опоры, заделанные в панели взрывозащитного элемента, а для фиксации предельного положения панели к торцам опорных стержней приварены листы-упоры, оно дополнительно оснащено взрывозащитным элементом, установленным в боковой части макета, который идентичен взрывозащитному элементу, установленному в верхней части макета, а с внешней стороны макета, около взрывозащитных элементов, установлены видеокамеры в бронированном исполнении. 1 з.п. ф-лы, 3 ил.
Наверх