Способ определения инерционности установки подслойного пожаротушения (упп) резервуара для хранения легковоспламеняющихся или горючих жидкостей

Изобретение относится к определению инерционности автоматических резервуаров для легковоспламеняющихся жидкостей. При осуществлении способа определяют для одного линейного ввода установки подслойного пожаротушения суммарные протяженности и внутренние диаметры растворопроводов, проходящих от помещения с электроприводными задвижками до узла высоконапорных пеногенераторов (ВПГ), пенопроводов, проходящих от узла ВПГ до разрывной мембраны и внутри резервуара. Затем определяют расход раствора пенообразователя и измеряют кратность пены, после чего производят расчет интервалов времени заполнения раствором пенообразователя растворопроводов и заполнения пеной пенопровода, проходящего от узла ВПГ до разрывной мембраны. Определяют значение давления, при котором происходит разрыв мембраны. Производят расчет интервала времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, и производят расчет интервала времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара. Измеряют скорость всплытия пены на поверхность жидкости и производят расчет интервала времени всплытия пены на поверхность жидкости. Инерционность установки подслойного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов и пенопровода, времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара и времени всплытия пены на поверхность нефти. В результате осуществления заявленного способа достигается повышение точности определения инерционности УПП. 1 ил.

 

Изобретение относится к области противопожарной техники, а именно к определению инерционности автоматических установок пенного пожаротушения (УПП) резервуаров для легковоспламеняющихся или горючих жидкостей (ЛВЖ и ГЖ), в частности нефти и нефтепродуктов, путем подачи огнетушащей пены в слой ЛВЖ и ГЖ (подслойное тушение) при контроле и модернизации существующих и проектировании новых УПП.

Из уровня техники известны системы и установки подслойного пожаротушения в резервуарах с легковоспламеняющимися или горючими жидкостями [патент на изобретение RU 2411053 С1, опубл. 10.02.2011, МПК: А62С 3/06, А62С 5/02], [патент на полезную модель RU 117298 U1, опубл. 27.06.2012, МПК: А62С 35/00], [патент на полезную модель RU 21145 U1, опубл. 27.12.2001, МПК: А62С 3/06, А62С 35/00], которые включают растворопроводы с электрозадвижками, пенопроводы, оборудованные высоконапорными пеногенераторами, обратными клапанами, разрывными мембранами, внутреннюю разводку труб с пенными насадками.

В ряде нормативных документов [СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования. Утвержден и введен в действие Приказом МЧС России от 25 марта 2009 г. №175. Разд. 5.2.6, 6.3.1.4], [СП 155.13130.2014. Склады нефти и нефтепродуктов. Требования пожарной безопасности. Утвержден и введен в действие приказом МЧС России от 26 декабря 2013 г. №837. Приложение А, п. А4], [СНиП 2.11.03-93. Склады нефти и нефтепродуктов. Противопожарные нормы. Утверждены постановлением Государственного комитета по вопросам архитектуры и строительства от 26 апреля 1993 г. №18-10. Приложение 3, п. 4] приведены нормативные требования, согласно которым инерционность стационарных систем пожаротушения не должна превышать 3 мин. При этом под инерционностью установки пожаротушения понимают время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя до начала подачи огнетушащего вещества в защищаемую зону.

В уровне техники не выявлено способов определения инерционности установок подслойного пожаротушения, которые бы учитывали время «всплытия» пены после выхода из пенного насадка, а также время нарастания давления в пенопроводе до величины, достаточной для разрыва мембраны, а именно до значения, превышающего гидростатическое давление жидкости, хранящейся в резервуаре, которое зависит от уровня взлива жидкости в резервуаре и от кратности пены.

Задачей, на решение которой направлено изобретение, является создание способа определения инерционности установок подслойного пожаротушения, учитывающего параметры инерционности, указанные выше.

Техническим результатом изобретения является повышение точности определения инерционности установки подслойного пожаротушения.

Указанная задача решается, а технический результат достигается тем, что в способе определения инерционности установки подслойного пожаротушения (УПП) для резервуара для хранения легковоспламеняющихся или горючих жидкостей определяют для одного линейного ввода УПП суммарные протяженности растворопроводов, проходящих от помещения с электроприводными задвижками (ПЭЗ) до узла высоконапорных пеногенераторов (ВПГ), протяженность пенопровода, проходящего от узла ВПГ до разрывной мембраны, и пенопровода, проходящего внутри резервуара; определяют внутренний диаметр растворопроводов, внутренний диаметр пенопровода, проходящего от узла ВПГ до разрывной мембраны, и пенопровода, проходящего внутри резервуара; определяют расход раствора пенообразователя по одному линейному вводу УПП с учетом общего расхода раствора пенообразователя при минимальном рабочем давлении ВПГ и количества линейных вводов УПП в резервуар; измеряют кратность пены установки пенного пожаротушения; производят расчет интервала времени заполнения раствором пенообразователя растворопроводов и интервала времени заполнения пеной пенопровода, проходящего от узла ВПГ до разрывной мембраны; определяют значение давления, при котором происходит разрыв мембраны; производят расчет интервала времени нарастания значения давления в пенопроводе, проходящем от узла ВПГ до разрывной мембраны, до значения, при котором происходит разрыв мембраны, с учетом максимального уровня взлива нефти в резервуаре и уровня установки пенопровода внутри резервуара; производят расчет интервала времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара; измеряют скорость всплытия пены на поверхность жидкости при различных уровнях взлива нефти в резервуаре, определяют усредненную скорость всплытия пены, и с учетом полученных данных производят расчет интервала времени всплытия пены на поверхность жидкости; инерционность установки пенного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов и пенопровода, проходящего от узла ВПГ до разрывной мембраны, времени нарастания значения давления в пенопроводе, проходящем от узла ВПГ до разрывной мембраны, до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара и времени всплытия пены на поверхность нефти.

Изобретение поясняется чертежом, на котором представлена технологическая схема установки подслойного пожаротушения резервуара для хранения легковоспламеняющихся или горючих жидкостей, и позициями обозначены:

1 - резервуар для хранения легковоспламеняющихся или горючих жидкостей;

2 - линейный ввод УПП;

3 - растворопровод, проходящий от ПЭЗ до узла ВПГ;

4 - пенопровод, проходящий от узла ВПГ до разрывной мембраны;

5 - пенопровод, проходящий внутри резервуара;

6 - высоконапорный пеногенератор;

7 - разрывная мембрана;

8 - пенный насадок для подслойного пожаротушения;

9 - патрубок для установки узла периодических испытаний;

10 - накладной расходомер;

11 - манометр;

12 - помещение с электроприводными задвижками.

Способ далее поясняется со ссылками на чертеж.

Способ определения инерционности установки подслойного пожаротушения (УПП) для резервуара для хранения легковоспламеняющихся или горючих жидкостей 1 разработан для обеспечения возможности проверки соответствия расчетов инерционности срабатывания УПП, выполняемых при проектировании, фактическим значениям и определения необходимости изменения конструкции УПП для соответствия ее инерционности нормативным показателям.

Инерционность установки пожаротушения определяется временем с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону.

Защищаемой зоной резервуара при применении установок подслойной подачи пены считают зеркало горючей или легковоспламеняющейся жидкости. Следовательно, способ определения инерционности установок подслойной подачи пены должен включать время «всплытия» пены после выхода из пенного насадка 8, которое будет зависеть от типоразмера резервуара 1 для хранения ЛВЖ и ГЖ, вязкости нефти и уровня налива ЛВЖ и ГЖ.

Пена под слой жидкости подается из пенных насадков 8, установленных на закольцованном трубопроводе, заполненном жидкостью и находящемся под гидростатическим давлением, при этом избыточное давление жидкости в закольцованном трубопроводе может составлять до 0,2 МПа, что может оказывать существенное влияние на время нарастания давления в трубопроводе до давления разрыва мембраны.

Инерционность установки пенного пожаротушения состоит из следующих временных интервалов:

- время заполнения растворопроводов от ПЭЗ до узла ВПГ 3;

- время заполнения пеной пенопровода от узла ВПГ до разрывной мембраны 4;

- время нарастания давления пены до давления разрыва мембраны в пенопроводе от узла ВПГ до разрывной мембраны 4;

- время заполнения пенопровода внутри резервуара 5 и поступления пены к пенным насадкам 8;

- время подъема пены до поверхности легковоспламеняющейся или горючей жидкости.

Заявленный способ определения инерционности УПП для резервуара для хранения ЛВЖ и ГЖ осуществляют следующим образом.

Первоначально определяют для одного линейного ввода 2 УПП суммарные протяженности растворопроводов 3, проходящих от помещения с электроприводными задвижками (ПЭЗ) 12 до узла высоконапорных пеногенераторов (ВПГ) 6, протяженность пенопровода 4, проходящего от узла ВПГ 6 до разрывной мембраны 7, и пенопровода 5, проходящего внутри резервуара 1. Определяют внутренние диаметры растворопроводов 3, пенопровода 4, проходящего от узла ВПГ 6 до разрывной мембраны 7, и пенопровода 5, проходящего внутри резервуара. Указанные параметры определяют в зависимости от типа резервуара 1 для хранения ЛВЖ и ГЖ, типа УПП, установленной на резервуаре 1, и проектных размеров растворопроводов и пенопроводов.

Затем определяют расход раствора пенообразователя по одному линейному вводу УПП Qлин с учетом общего расхода раствора пенообразователя Qобщ при минимальном рабочем давлении ВПГ и количества линейных вводов 2 УПП в резервуар n. Для определения общего расхода раствора пенообразователя при минимальном рабочем давлении ВПГ производят замер расхода раствора пенообразователя при помощи накладного расходомера-счетчика 10, установленного между ПЭЗ 12 и узлом ВПГ 6, на каждом из линейных вводов 2 УПП, и получают значение общего расхода раствора пенообразователя как сумму измеренных расходов по каждому линейному вводу УПП. Значение усредненного расхода раствора пенообразователя по одному линейному вводу УПП определяется как Qлин=Qобщ/n.

После этого проводят измерения кратности пены установки пенного пожаротушения методом, заключающимся в измерении массы до и после заполнения пеной емкости для сбора пены с последующим вычислением кратности пены. К патрубку 9 подсоединяют узел периодических испытаний, запускают работу УПП, фиксируют начало устойчивой подачи пены из высоконапорного пеногенератора 6 и после этого производят отбор пены в мерную емкость. Замеряют объем отобранной пены. После полного разрушения пены в мерной емкости замеряют объем раствора пенообразователя и определяют кратность пены как отношение объема пены к объему раствора пенообразователя.

Расчет интервала времени заполнения раствором пенообразователя растворопроводов 3 и интервала времени заполнения пеной пенопровода 4, проходящего от узла ВПГ 6 до разрывной мембраны 7, производят по следующей формуле:

где D1(2) - внутренний диаметр растворопровода от ПЭЗ до узла ВПГ либо пенопровода от узла ВПГ до разрывной мембраны;

L1(2) - суммарная протяженность растворопроводов от ПЭЗ до узла ВПГ либо протяженность пенопровода от узла ВПГ до разрывной мембраны;

Qлин - усредненный расход раствора пенообразователя по одному линейному вводу;

К - кратность пены.

Общее время заполнения растворопроводов 3 и пенопроводов 4, расположенных от ПЭЗ до разрывной мембраны определяют следующим образом:

Разрыв мембраны 7 происходит в тот момент, когда давление пены в пенопроводе, проходящем от узла ВПГ 6 до разрывной мембраны 7, превысит гидростатическое давление жидкости, хранящейся в резервуаре 1, на величину, необходимую для разрыва мембраны 7, установленной в УПП. Значение давления разрыва мембраны определяют по манометру 11, установленному между узлом ВПГ 6 и разрывной мембраной 7.

Расчет интервала времени нарастания значения давления в пенопроводе 4, проходящем от узла ВПГ 6 до разрывной мембраны 7, до значения, при котором происходит разрыв мембраны, выполняемый с учетом максимального уровня взлива нефти в резервуаре 1 и уровня установки пенопровода 5 внутри резервуара, производят в соответствии со следующим соотношением:

где Pразрыва - давление разрыва мембраны;

Ратм - атмосферное давление.

Поскольку при разрыве мембраны пена находится под давлением, превышающим гидростатическое давление нефти, то для вытеснения нефти из пенопровода 5 внутри резервуара дополнительного сжатия пены не требуется. Экспериментально определенное время заполнения т-образных пенных насадков 8 не превышает 10% от времени заполнения пенопровода внутри резервуара. С учетом этого интервал времени от разрыва мембраны 7 до заполнения пенопровода 5 внутри резервуара и начала выхода пены из пенных насадков 8 составляет:

где D3 - внутренний диаметр пенопровода внутри резервуара;

L3 - общая длина пенопровода внутри резервуара.

Усредненную скорость всплытия пены на поверхность жидкости определяют с учетом измерений посредством секундомера интервалов времени после начала выхода пены из пенных насадков 8 от появления волнения до появления пены на поверхности ЛВЖ и ГЖ в резервуаре 1, полученных для различных высот взлива ЛВЖ и ГЖ в резервуаре. Далее производят расчет интервала времени всплытия пены на поверхность жидкости:

где Hвзлива - высота взлива ЛВЖ и ГЖ в резервуаре;

hвн.пенопр - высота установки пенопровода внутри резервуара;

- скорость всплытия пены.

В результате инерционность установки пенного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов 1 и пенопровода 4, проходящего от узла ВПГ до разрывной мембраны, времени нарастания значения давления в пенопроводе 4, проходящем от узла ВПГ до разрывной мембраны, до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода 5 внутри резервуара и времени всплытия пены на поверхность нефти:

Затем проводят сравнение полученного значения инерционности установки пенного пожаротушения с нормативным значением инерционности и делают вывод о необходимости внесения изменений в конструкцию установки пенного пожаротушения для соответствия инерционности УПП нормативному значению. В частности, может быть сделан вывод о необходимости изменения протяженностей или внутренних диаметров растворопроводов либо пенопроводов с обеспечением сохранения необходимого напора на выходе из пенных насадков.

В результате осуществления заявленного способа достигается повышение точности определения инерционности установки подслойного пожаротушения.

Способ определения инерционности установки подслойного пожаротушения (УПП) резервуара для хранения легковоспламеняющихся или горючих жидкостей, заключающийся в том, что:

- определяют для одного линейного ввода УПП суммарные протяженности растворопроводов, проходящих от помещения с электроприводными задвижками (ПЭЗ) до узла высоконапорных пеногенераторов (ВПГ), протяженность пенопровода, проходящего от узла ВПГ до разрывной мембраны, и пенопровода, проходящего внутри резервуара;

- определяют внутренний диаметр растворопроводов, внутренний диаметр пенопровода, проходящего от узла ВПГ до разрывной мембраны, и пенопровода, проходящего внутри резервуара;

- определяют расход раствора пенообразователя по одному линейному вводу УПП с учетом общего расхода раствора пенообразователя при минимальном рабочем давлении ВПГ и количества линейных вводов УПП в резервуар;

- измеряют кратность пены установки пенного пожаротушения;

- производят расчет интервала времени заполнения раствором пенообразователя растворопроводов и интервала времени заполнения пеной пенопровода, проходящего от узла ВПГ до разрывной мембраны;

- определяют значение давления, при котором происходит разрыв мембраны;

- производят расчет интервала времени нарастания значения давления в пенопроводе, проходящем от узла ВПГ до разрывной мембраны, до значения, при котором происходит разрыв мембраны, с учетом максимального уровня взлива нефти в резервуаре и уровня установки пенопровода внутри резервуара;

- производят расчет интервала времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара;

- измеряют скорость всплытия пены на поверхность жидкости при различных уровнях взлива нефти в резервуаре, определяют усредненную скорость всплытия пены и производят расчет интервала времени всплытия пены на поверхность жидкости;

- инерционность установки пенного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов и пенопровода, проходящего от узла ВПГ до разрывной мембраны, времени нарастания значения давления в пенопроводе, проходящем от узла ВПГ до разрывной мембраны, до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара и времени всплытия пены на поверхность нефти.



 

Похожие патенты:

Устройство может быть использовано для автоматического обнаружения и предотвращения опасности пожара на транспортных средствах. Устройство содержит являющиеся частями системы обнаружения удара и приведения в действие воздушных подушек детекторы удара и обрабатывающий/управляющий модуль для приведения в действие клапанного средства, обеспечивающего подачу сжатого воздуха по трубопроводам в пеногенераторы, расположенные непосредственно в местах возможного возгорания.

Изобретение относится к нанотехнологиям в области противопожарной техники. Предлагаемое техническое решение относится к метаемым огнетушащим средствам.

Изобретение относится к огнетушащему средству, а также способу подавления огня, огнетушителю и системе пожаротушения, использующим это средство. Огнетушащее средство содержит биологическое поверхностно-активное вещество, а именно липопептидное соединение или его соль.

Способ адаптивного контроля пожарной опасности и адаптивного тушения, система для его осуществления предназначены для многофакторного контроля среды защищаемого объекта на предмет раннего обнаружения пожара и локализации его при оптимальных режимах расхода огнетушащего вещества.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Предложен способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающийся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к устройствам для объемного тушения пожаров посредством газоаэрозольной смеси ингибиторов. Генератор огнетушащего аэрозоля содержит оснащенный термозащитной прослойкой и воспламенителем внешнего инициирования цилиндрический корпус, в котором установлены функциональный заряд и металлический трубопровод коммуникации камеры сгорания с ресивером под крышкой с выходными отверстиями.
Изобретение относится к средствам пожаротушения. Изготовляют контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом.
Изобретение относится к средствам пожаротушения. Изготовляют контейнер, заполненный диспергированным огнетушащим веществом, смешанным с взрывным веществом.
Изобретение относится к средствам пожаротушения и может быть использовано для безлюдного тушения пожаров. Способ состоит в том, что снабжают беспилотное летательное средство контейнерами - пластиковыми бутылями, которые заполняют диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом. В крышке контейнера выполняют паз для установки с внутренней ее стороны теплового взрывателя-детонатора. Беспилотное летательное средство снабжено тепловым датчиком для дистанционного ориентирования его на зону горящего объекта и подачи команды на автоматическую систему для периодического выброса контейнеров в зону горящего объекта при положении беспилотного летательного средства над зоной горящего объекта. С теплового датчика подают команду на выброс контейнера, который по расчетной траектории доставляют в выбранный участок горящего объекта. Под воздействием высокой температуры в зоне горящего объекта взрывают тепловой взрыватель-детонатор, чем детонируют взрывчатое вещество контейнера. В соответствии с интенсивностью пожара автоматической системой выброса контейнеров определяют интервал времени выброса последующих контейнеров, которые выбрасывают по мере полета беспилотного летательного средства над зоной пожара. Техническим результатом данного изобретения является повышение эффективности пожаротушения.

Изобретение относится к противопожарной технике. Установка газового пожаротушения для мест хранения емкостей с легковоспламеняющимися и горючими жидкостями содержит блок управления и последовательно соединенные изотермический резервуар для жидкой углекислоты с трубопроводом подачи углекислоты и запорно-пусковым устройством, расположенным вне резервуара, распределительные устройства и распределительный трубопровод с распылителями. Запорно-пусковое устройство находится выше уровня жидкой углекислоты в резервуаре. Забор углекислоты производится через трубопровод в резервуаре из донной части последнего. Распылитель выполнен в виде дренчерной головки. Каждая из дренчерных головок выполнена в виде штуцера с каналом и рассекателя, закрепленного на держателях. Основание соединено с дугообразными держателями, которые удерживают втулку с закрепляемым на ней рассекателем, выполненным в виде диффузора с отогнутым в сторону основания пояском с расположенными по образующим конической поверхности пояска лепестками. Внутри рассекателя дополнительно установлен распылитель, выполненный в виде чашки, крепящейся посредством горизонтально расположенных, плоских лепестков, к внутренней поверхности рассекателя, при этом ось чашки совпадает с осями сквозного канала штуцера и втулки, а ее внутренняя полость направлена в сторону втулки. На внутренней поверхности чашки распылителя дренчерных головок выполнены винтовые канавки. Технически достижимый результат - повышение эффективности пожаротушения. 2 ил.

Изобретение относится к предохранительным устройствам систем безопасности. Автоматическое предохранительное устройство систем безопасности в чрезвычайных ситуациях содержит систему датчиков и электроклапан. С устройства управления, выполненного в виде электроклапана, поступает сигнал на срабатывание исполнительного устройства. Устройство электропуска электроклапана монтируется на запорно-поджимной гайке, закрепленной в верхней части корпуса электроклапана, и содержит два контакта: центральный контакт и контакт "корпус". При этом внутри корпуса электроклапана установлен поршень, фиксируемый в дежурном состоянии фиксатором. При срабатывании электроклапана поршень выполняет функцию фрезы, срезающей фиксатор, выполненный в виде отожженной проволоки диаметром 1,0 мм. Один конец фиксатора закреплен на корпусе электроклапана, а другой - на конце пускового рычага, соединенном с пусковой пружиной. Исполнительное устройство приводится в действие от кнопки включения, входящей в систему запуска исполнительного устройства. Система запуска исполнительного устройства включает в себя пусковой рычаг, на одном из концов которого зафиксированы пусковая пружина и фиксатор, а на другом конце имеется два отверстия: отверстие для предохранительной чеки и отверстие для установки оси пускового рычага. Ось пускового рычага закреплена на кронштейне, жестко связанном с корпусом исполнительного устройства. Электроклапан связан с системой зондирования опасной зоны, включающей в себя датчики, настроенные на превышение предельно допустимых концентраций химически опасных веществ, присутствующих в этой зоне, и зонд, настроенный на превышение предельно допустимых уровней радиоактивных веществ, сигналы с которых поступают на общий микропроцессор, обрабатывающий эти сигналы и выдающий управляющий сигнал на включение электроклапана. 3 ил.
Изобретение относится к средствам пожаротушения и может быть использовано для тушения участков горящего объекта. Сущность изобретения состоит в том, что изготовляют взрыватель-детонатор с замедлителем, время горения которого составляет 1,5-1,3 времени доставки контейнера в зону горения. В паз контейнера перед вбрасыванием в зону горения вставляют взрыватель-детонатор, выдергивают чеку, после догорания замедлителя взрывают взрыватель-детонатор. При взрыве контейнера со взрывчатым веществом сбиваются языки пламени и распыляется огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение эффективности пожаротушения.
Изобретение относится к средствам пожаротушения. Способ взрывного пожаротушения заключается в том, что изготовляют герметичный контейнер и герметичный пенал с механическим взрывателем-детонатором. К чеке детонатора прикрепляют огнеупорный фал, длина которого обеспечивает дистанционный взрыв контейнера. Заполняют герметичный контейнер водой или огнетушащим веществом, а также заполняют пенал взрывчатым веществом. Помещают пенал в контейнер так, чтобы чека с огнеупорным фалом были выведены наружу. При необходимости пожаротушения забрасывают контейнер в комнату или в зону, где возник пожар. Перемещают конец огнеупорного фала в защищенную от взрыва позицию. Выдергивают огнеупорным фалом чеку взрывателя-детонатора, чем осуществляют его взрыв и детонируют взрывчатое вещество, находящееся в пенале. При взрыве взрывчатого вещества сбиваются языки пламени и интенсивно разбрызгивается вода или огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта во всем объеме данного участка горящего объекта, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение оперативности пожаротушения за счет осуществления пожаротушения силами самих граждан до прибытия пожарных.
Изобретение относится к средствам пожаротушения. Способ взрывного безводного пожаротушения состоит в том, что изготавливают контейнер и заполняют его огнетушащим веществом и взрывным веществом. К чеке механического взрывателя-детонатора прикрепляют огнеупорный фал, длина которого обеспечивает дистанционный взрыв контейнера. При необходимости пожаротушения вбрасывают контейнер в комнату, где возник пожар, и прикрывают за собой дверь, перемещаются в дальнюю комнату, для чего растягивают за собой огнеупорный фал, выдергивают чеку, чем осуществляют взрыв взрывателя-детонатора и детонируют взрывчатое вещество контейнера. При взрыве сбиваются языки пламени и интенсивно распыляется огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта во всем объеме данного участка горящего объекта, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение оперативности пожаротушения за счет осуществления пожаротушения силами самих граждан до прибытия пожарных.

Изобретение относится к противопожарной технике, а именно к тушению пожаров при возгораниях на больших площадях, и может быть использовано для локализации и ликвидации крупных лесных пожаров, а также при подавлении возгораний промышленных и общественных объектов. Устройство пожаротушения содержит сплошной металлический цилиндрический корпус, внутри которого выполнена выемка в виде усеченного конуса, в котором закреплена тонкостенная оболочка из резины, заполненная тушащей жидкостью. Свободный конец оболочки продет в центральное отверстие в верхней части корпуса, где закреплен снаружи держателем. Над держателем на верхней стороне корпуса закреплена ручка, к которой посредством крепежного элемента со встроенным замком прикреплен первый трос, пропущенный через шарообразный металлический стопор и прикрепленный к металлической платформе, подвешенной к средству доставки. На противоположных сторонах в корпусе симметрично выполнены две внутренние полости, в каждой из которых расположена пружина, один конец которой прикреплен к корпусу, а второй конец пружины соединен с поршнем, на котором закреплена игла. К поршню прикреплен второй трос, который пропущен через ролик и прикреплен к кольцу, через которое продет первый трос. Внутренний диаметр кольца в два раза меньше внешнего диаметра шарообразного металлического стопора. Крепежный элемент со встроенным замком с помощью кабеля соединен с источником питания, расположенным на средстве доставки, например вертолете. Оболочка из резины заполнена тушащей жидкостью объемом от 1 до 3 л. Технический результат: безопасность, возможность повторного использования устройств пожаротушения, оснащенных новыми оболочками из резины. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к системе снижения содержания кислорода в целевом помещении, в частности для контроля и предотвращения пожара. Система содержит замкнутое буферное пространство (1), выполненное с возможностью соединения или соединенное по текучей среде с целевым помещением (2) для подачи воздуха помещения из буферного пространства (1) в целевое помещение (2), механизм (5) снижения содержания кислорода, выделенный буферному пространству (1) для установки и поддержания пониженного содержания кислорода в пространственной атмосфере буферного пространства (1) в сравнении с нормальной земной атмосферой таким образом, что содержание кислорода в пространственной атмосфере буферного пространства (1) ниже, чем содержание кислорода в пространственной атмосфере целевого помещения (2), и механизм (3) для подачи воздуха помещения из буферного пространства (1) в целевое помещение (2). При этом, с одной стороны, выбрано соотношение между пространственным объемом буферного пространства (1) и целевого помещения (2) и, с другой стороны, содержание кислорода в пространственной атмосфере буферного пространства (1) снижено в сравнении с содержанием кислорода в нормальной земной атмосфере до подачи воздуха помещения из буферного пространства (1) в целевое помещение (2), таким образом, что содержание кислорода в пространственной атмосфере целевого помещения (2) падает ниже заранее определенной величины, и содержание кислорода в пространственной атмосфере буферного пространства (1) возрастает не более чем на 0,15% по объему в результате подачи воздуха помещения из буферного пространства (1) в целевое помещение (2). Причем пространственный объем буферного пространства (1) и пространственный объем целевого помещения (2) дополнительно выбраны таким образом, что буферное пространство (1) значительно больше, чем целевое помещение (2). Изобретение обеспечивает эффективную и экономически выгодную защиту помещения от пожара. 2 н. и 31 з.п. ф-лы, 5 ил.

Изобретение относится к противопожарной технике, а именно к автоматическим системам пожаротушения, и может быть использовано для пожарной защиты моторных отсеков транспортных средств. Устройство для автоматической локальной пожарной защиты автомобиля выполнено в виде капсулы, которая зафиксирована в оболочке удерживающими лямками, имеющими возможность совместного перемещения с капсулой при воздействии на нее инертных газов, выделяемых при срабатывании газогенерирующего заряда, в сторону ножа. Нож выполнен, например, крестообразным и жестко зафиксирован на оболочке перед распылительным насадком, причем оболочка капсулы выполнена более эластичной по сравнению с лямками. Устройство для автоматической локальной пожарной защиты автомобиля осуществляется следующим способом. Разрушение оболочки капсулы с нанопорошком заключается в том, что деформацию оболочки капсулы производят путем выделения инертных газов медленно горящим газогенерирующим пиротехническим зарядом, а перемещение капсулы на участке ее разрушения производят совместно с удерживающими лямками навстречу средству локального разрушения до момента полного разрушения оболочки капсулы ножом. Технический результат - высокая эффективность пожаротушения, за счет повышения возможности ингибирования химических реакций в зоне горения. 2 н.п. ф-лы, 9 ил.
Изобретение относится к средствам пожаротушения и может быть использовано для тушения возгораний наружных поверхностей летательного аппарата. Сущность изобретения состоит в том, что изготовляют герметичный огнеупорный контейнер, изготовляют герметичный тубус, изготовляют тепловой взрыватель-детонатор, заполняют герметичный огнеупорный контейнер огнетушащим веществом, заполняют герметичный тубус взрывчатым веществом, способным при взрыве разорвать герметичный огнеупорный контейнер, создать взрывную волну, способную сбить языки пламени и разбрызгать на раскаленные элементы очага пожара огнетушащее вещество, вставляют в герметичный тубус со взрывчатым веществом тепловой взрыватель-детонатор, вставляют в герметичный огнеупорный контейнер с огнетушащим веществом герметичный тубус со взрывчатым веществом, устанавливают на летательный аппарат герметичные огнеупорные контейнеры в местах наиболее возможного возникновения пожара, при необходимости пожаротушения под воздействием температуры очага пожара осуществляют взрыв теплового взрывателя-детонатора, чем детонируют взрывчатое вещество в тубусе, при взрыве которого взрывают герметичный огнеупорный контейнер, чем сбиваются языки пламени и интенсивно разбрызгивается огнетушащее вещество, которое осаждается на раскаленных элементах горящего участка летательного аппарата, чем осуществляется отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение доступности для пожаротушения.

Изобретение относится к определению инерционности автоматических резервуаров для легковоспламеняющихся жидкостей. При осуществлении способа определяют для одного линейного ввода установки подслойного пожаротушения суммарные протяженности и внутренние диаметры растворопроводов, проходящих от помещения с электроприводными задвижками до узла высоконапорных пеногенераторов, пенопроводов, проходящих от узла ВПГ до разрывной мембраны и внутри резервуара. Затем определяют расход раствора пенообразователя и измеряют кратность пены, после чего производят расчет интервалов времени заполнения раствором пенообразователя растворопроводов и заполнения пеной пенопровода, проходящего от узла ВПГ до разрывной мембраны. Определяют значение давления, при котором происходит разрыв мембраны. Производят расчет интервала времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, и производят расчет интервала времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара. Измеряют скорость всплытия пены на поверхность жидкости и производят расчет интервала времени всплытия пены на поверхность жидкости. Инерционность установки подслойного пожаротушения определяют как сумму интервалов времени заполнения растворопроводов и пенопровода, времени нарастания значения давления в пенопроводе до значения, при котором происходит разрыв мембраны, времени от разрыва мембраны до заполнения пеной пенопровода внутри резервуара и времени всплытия пены на поверхность нефти. В результате осуществления заявленного способа достигается повышение точности определения инерционности УПП. 1 ил.

Наверх