Радиоизотопный способ измерения отложения пыли в горных выработках и устройство для его реализации



Радиоизотопный способ измерения отложения пыли в горных выработках и устройство для его реализации
Радиоизотопный способ измерения отложения пыли в горных выработках и устройство для его реализации

 

G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)
G01N1/10 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2618268:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ Институт проблем комплексного освоения недр Российской академии наук (ИПКОН РАН) (RU)

Изобретение относится к технике контроля запыленности поверхности горных выработок, промышленных помещений на предприятиях угольной, горно-металлургической и других отраслей промышленности и сельскохозяйственного производства, где присутствует взрывчатая пыль: угольная, сульфидная, мучная, пластмассовая и др. Техническим результатом является повышение эффективности и безопасности использования радиоизотопного способа измерения текущей массы пылевого осадка и упрощение конструкции устройства его реализующего. Предложен радиоизотопный способ измерения отложения пыли в горных выработках, заключающийся в использовании прямого поглощения мягкого бета-излучения пылью, осажденной на тонкую подложку-коллектор, которую располагают на детекторе, а источник углерод-14 в виде тонкой таблетки размещают на Г-образной стойке над коллектором на некоторой высоте от его центра. При этом измерение массы пылевого осадка производится в следующей последовательности. На детектор кладется тонкий коллектор, например фильтр АФА. Измеряется интенсивность I0 потока бета-частиц, прошедших через фильтр, и далее производится измерение интенсивности потока бета-частиц в процессе осаждения пыли Ii. Определяется масса пыли в мг, осевшей на 1 см2 поверхности, при этом k определяется из сравнения поверхностной плотности σi с величиной, определенной весовым методом, одновременно вычисляется погрешность измерения. Измерения σi происходят непрерывно с интервалами между измерениями, зависящими от скорости накопления осадка, до тех пор, пока погрешность Δσii не достигнет заданной величины. Цикл измерения повторяется, пока величина массы осевшей пыли на фильтре не достигнет заданного значения. Результат представляется либо на цифровом табло, либо цветовыми сигналами, свидетельствующими о степени приближения массы осевшей пыли к критическому значению. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к технике контроля запыленности поверхности горных выработок, промышленных помещений на предприятиях угольной, горно-металлургической и других отраслей промышленности и сельскохозяйственного производства, где присутствует взрывчатая пыль: угольная, сульфидная, мучная, пластмассовая и др.

Известен способ измерения пылеотложения, основанный на прямом взвешивании пыли, отлагающейся на подложке, при помощи электронных микровесов [Поздняков Г.А., Закутский Е.Л. Методы и средства контроля пылевзрывобезопасности угольных шахт. Горный информационно-аналитический бюллетень №12 «Аэрология». - М.: МГГУ. - 2007. - С. 58-70].

Недостатком данного способа является высокая чувствительность приборной реализации его к механическим воздействиям, которая требует строго горизонтальной установки прибора и соблюдения условий, при которых должны эксплуатироваться микровесы, что делает практически невозможным его эксплуатацию на промышленных предприятиях.

Наиболее близкими по технической сущности являются способ и устройство для измерения оседающей пыли во времени, в которых используется обратное бета-рассеяние от подложки с пылью [Рассолов Н.И., Скляренко И.П. Разработка способа контроля отложения угольной пыли в горных выработках. В кН. «Вопросы безопасности в угольных шахтах», т. XIII. МакНИИ. М.: Госгортехиздат. 1962. С. 219-240 (фиг. 1)].

Указанные способ и датчик обладают следующими недостатками.

Доля бета-излучения от источника углерод-14, попадающая на детектор, и КПД использования активности радионуклида в источнике излучения много меньше единицы, при этом доля излучения определяется телесными углами, под которыми смотрятся: пылевой осадок от источника и детектор от рассеивающей бета-излучение подложки. Поэтому требуется большая активность радионуклида в источнике бета-частиц.

Излучение источника, опасное для окружающих, направлено в сторону от боковой поверхности выработки, где могут находиться люди. Кроме того, источник и детектор не защищены от пыли, так как находятся у стенки в пылевом потоке, где поперечные пульсации больше, чем вдали от поверхности, и в результате этого происходит осаждение пыли на источнике и детекторе излучения, что сказывается на погрешности измерения массы осадка, а из-за требуемой большей активности источника повышается его стоимость.

Технической задачей изобретения является повышение эффективности и безопасности использования радиоизотопного способа измерения текущей массы пылевого осадка и упрощение конструкции устройства его реализующего.

Указанная техническая задача решается за счет использования прямого поглощения бета-частиц пылью, осажденной на тонкий коллектор, который помещают на детектор, а источник углерод-14 в виде тонкой таблетки размещают на Г-образной стойке в конце ее над коллектором на высоте не более 5 см от его центра.

Сущность изобретения поясняется чертежом на котором показаны:

источник - 1, коллектор (фильтр) - 2, сетка - 3, плоский детектор - 4, блок счета и обработки данных - 5, Г-образная стойка - 6, основание - 7 и кассета - 8 с окном.

Способ реализуется следующим образом.

Для измерения отложения пыли в горных выработках используют прямое поглощение бета-излучения источника углерод-14 пылью, осажденной на тонкий коллектор (фильтр) 2, который помещают над плоским детектором 4. На основании 7 за блоком счета и обработки данных 5 установлена Г-образная стойка 6 с источником 1 (углерод-14 в виде тонкой таблетки), который помещают в углубленном ложементе на ее конце на высоте не более 5 см от центра коллектора (фильтра) 2. На основании 7 устанавливают кассету 8 с окном, в которой укреплены друг над другом детектор 4 излучения (например, Бета-1.1 круглой формы), сетка 3, а сверху нее помещают тонкий коллектор (фильтр) 2 с поверхностной плотностью 1-1,5 мг/см2 (например, фильтр АФА-ВП-10 или НЭЛ-3). Для съема данных кассету 8 с окном подключают к блоку счета и обработки данных 5. Источник бета-излучения (углерод-14 в виде таблетки) монтируют в углубленном ложементе на конце горизонтальной части Г-образной стойки 6, которую крепят с подветренной стороны от детектора 4 к блоку счета и обработки данных 5 и основанию 7. Устройство для измерения отложения пыли в горных выработках размещают у стенки горной выработки горизонтально или вертикально так, чтобы Г-образная стойка 6 с источником 1 находилась позади коллектора (фильтра) 2 по ходу движения воздуха и не нарушала структуру потока.

Измерение запыленности коллектора производят в следующей последовательности.

Измеряют интенсивность I0 потока бета-частиц, прошедших через чистый коллектор (фильтр) 2 (как показал эксперимент, время измерения интенсивности может быть порядка 1-2 с), далее производят измерение интенсивности потока бета-излучения источника 1 (углерод-14) в процессе осаждения пыли Ii. Массу пыли σi в мг, осевшей на 1 см2 поверхности, определяют по формуле

или ,

где σi - масса пыли в мг, осевшей на 1 см2 поверхности;

I0 - интенсивность потока;

Ii - интенсивность потока бета-частиц в процессе осаждения пыли;

μ - массовый коэффициент ослабления излучения, см2/мг;

c - коэффициент, связанный с конструктивными данными датчика;

определяется из сравнения массы σi с массой, определенной весовым методом.

Одновременно вычисляют погрешность измерения σi по формуле

.

Интервал между измерениями устанавливают в зависимости от требуемой точности определения заданной величины осадка и от самой величины осадка.

Измерения I производят непрерывно каждые 2 с или с интервалами между измерениями, зависящими от скорости накопления осадка, до тех пор, пока погрешность Δσi/σ не достигнет заданной величины, например 25% или 15%. Цикл измерения повторяют, пока величина массы пыли на фильтре не достигнет заданного значения.

Результат представляется либо на цифровом табло, либо цветовыми сигналами, свидетельствующими о степени приближения массы осевшей пыли к критическому значению.

Увеличение эффективности использования радионуклида достигается за счет измерения вместо обратного прямого поглощения бета-излучения (радионуклида углерод-14) пылевым осадком, при котором доля бета-излучения, падающая на детектор 4, значительно больше, чем при использовании обратного рассеяния. Поэтому требуется меньшая активность источника 1.

Повышение безопасности использования способа достигают за счет уменьшения активности источника 1 (радионуклида углерод-14), имеющего четвертый класс опасности, и конструкции радиометрического узла, в котором источник 1 утоплен в Г-образной стойке 6 и обращен открытой стороной к плоскому детектору 4.

С целью определения взрывоопасного отложения пыли задаваемая величина поверхностной плотности осадка σв (г/м2) определяется из соотношения

,

где σв - взрывоопасная величина поверхностной плотности пылевого осадка;

c - нижний предел взрывчатости пыли, г/м3;

v - объем выработки, м3;

S - поверхность выработки, м2.

Устройство работает следующим образом.

В горных выработках для измерения отложения пыли используют прямое поглощение ею бета-излучения радионуклида углерод-14. Пыль осаждается на тонкой подложке коллектора (фильтра) 2, который помещен на детекторе 4, а источник 1 (углерод-14) в виде тонкой таблетки размещен над коллектором (фильтром) 2 на высоте не более 5 см от его центра на конце Г-образной стойки 6 в углубленном ложементе.

Чтобы не возмущать поток воздуха, из которого оседают пылевые частицы, и повысить точность измерения массы пылевого осадка, Г-образная стойка 6 укреплена на основании 7 за блоком счета и обработки данных 5, а само устройство измерения отложения пыли в горных выработках устанавливают в горной выработке таким образом, чтобы кассета 8 с детектором 4 располагалась с подветренной стороны или сбоку за детектором 4, по ходу предполагаемого движения воздуха. Для съема данных кассета 8 с окном подключена к блоку счета и обработки данных 5.

Для безопасности использование источника 1 его выполняют в виде таблетки и утапливают в Г-образной стойке 6 со стороны, обращенной к окну кассеты 8.

Расположение источника 1 на расстоянии не более 5 см от коллектора 2 в потоке, где поперечные пульсации меньше, чем у коллектора 2, исключает влияние источника 1 на характер движения воздуха, из которого оседает пыль, и уменьшает вероятность осаждения пыли на источнике 1, что снижает погрешность измерения массы осадка.

Использование прямого поглощения бета-излучения источника 1 (углерода-14) пылевым осадком повышает эффективность использования радионуклида в источнике 1, что позволяет уменьшить активность радионуклида и повышает безопасность применения радиоизотопного способа измерения массы пылевого осадка и устройства его реализующего.

1. Радиоизотопный способ измерения отложения пыли в горных выработках, заключающийся в поглощении бета-излучения пылевым осадком с использованием устройства, включающего источник бета-излучения, детектор, коллектор и блоки обработки данных, отличающийся тем, что измерение массы пылевого осадка производят путем определения интенсивности прямого поглощения мягкого бета-излучения, измеряют интенсивность I0 потока бета-частиц, прошедших через чистый коллектор в заданный промежуток времени, например 1-2 с, далее производят измерение интенсивности потока бета-излучения источника в процессе осаждения пыли Ii, а массу пыли σi в мг, осевшей на 1 см2 поверхности, определяют по формуле

или ,

где σi - масса пыли в мг, осевшей на 1 см2 поверхности;

I0 - интенсивность потока;

Ii - интенсивность потока бета-частиц в процессе осаждения пыли;

μ - массовый коэффициент ослабления излучения, см2/мг;

с - коэффициент, связанный с конструктивными данными датчика;

определяют из сравнения массы σi с массой, определенной весовым методом, одновременно определяют погрешность измерения σi по формуле

,

а интервал между измерениями устанавливают в зависимости от требуемой точности определения заданной величины осадка и от самой величины осадка, при этом взрывоопасность пылеотложения, задаваемая величиной поверхностной плотности осадка σв (г/м2), определяют из соотношения

,

где σв - взрывоопасная величина поверхностной плотности пылевого осадка, г/м2;

с - нижний предел взрывчатости пыли, г/м3;

ν - объем выработки, м3;

S - поверхность выработки, м2.

2. Радиоизотопный способ измерения отложения пыли в горных выработках по п. 1, отличающийся тем, что измерения производят непрерывно или с интервалами между измерениями, зависящими от скорости накопления осадка, до тех пор, пока погрешность Δσi/σ не достигнет заданной величины, например 25% или 15%, а цикл измерения повторяют, пока величина массы пыли на фильтре не достигнет заданного значения.

3. Устройство измерения отложения пыли в горных выработках, включающее источник бета-излучения, детектор, коллектор и блоки обработки данных, отличающееся тем, что оно выполнено в виде плоского основания с Г-образной стойкой, укрепленной на основании за блоком счета и обработки данных, к которому подключена кассета с окном, в которой установлены друг над другом детектор излучения, сетка, а сверху нее помещен тонкий коллектор (фильтр) с поверхностной плотностью 1,0-1,5 мг/см2 (например, фильтр АФА-ВП-10 или НЭЛ-3), источник бета-излучения виде таблетки вмонтирован в углубленном ложементе на конце горизонтальной части Г-образной стойки на высоте не более 5 см от коллектора и своей активной частью направлен в сторону окна кассеты с подветренной стороны от блока счета и обработки данных и основания.



 

Похожие патенты:

Изобретение предназначено для исследования и модификации поверхности измеряемых объектов с помощью источников излучения. Сканирующее устройство локального воздействия включает образец (1) с первой (2) и второй поверхностями (3), зонд (4) с острием (5), закрепленный в модуле зонда (7), сканер (8), первый модуль перемещения (9) и блок управления (10).

Использование: для рентгеноспектрального анализа тяжелых элементов. Сущность изобретения заключается в том, что анализатор тяжелых элементов содержит рентгеновскую трубку или источник гамма-излучения, коллиматор первичного пучка, держатель образца, два аналитических канала с коллиматорами и фильтрами вторичного излучения, устройство детектирования с рядами детекторов и регистрирующую аппаратуру, подключенную к выходам детекторов, при этом держатель образца выполнен с возможностью установки образца с плоской или вогнутой по сфере рабочей поверхностью на сфере, источник или фокус рентгеновской трубки расположен на упомянутой сфере, в обоих каналах коллиматоры выполнены с входной и выходной щелями, при этом в первом аналитическом канале выходная щель проходит через диаметрально противоположную источнику точку сферы перпендикулярно плоскости осей пучков, а входная щель расположена в плоскости осей пучков между держателем образца и выходной щелью, второй канал предназначен для анализа тория-урана с повышенной чувствительностью, при этом входная щель расположена в плоскости осей пучков, а выходная щель расположена на упомянутой сфере перпендикулярно входной щели под углом рассеяния выше 140°, кроме того, предусмотрена возможность либо перемещения и установки устройства детектирования под пучки на выходе обоих каналов, либо использования в канале тория-урана второго устройства детектирования.

Изобретение относится к области исследования или анализа материалов с помощью прецизионной нейтронной спектрометрии, основанной на использовании метода спин-эхо малоуглового рассеяния.

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов.

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов.

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита.

Изобретение относится к рентгено-абсорбционным анализаторам содержания серы в нефти и нефтепродуктах и может быть использовано для измерения концентрации серы в технологических трубопроводах в потоке анализируемой среды.

Использование: для формирования изображения быстропротекающего процесса с помощью протонного излучения. Сущность изобретения заключается в том, что способ включает ввод протонного пучка, по крайней мере, в один магнитооптический канал, изменение ширины протонного пучка на разные величины, которое осуществляют последовательно в одном и том же магнитооптическом канале, для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков, либо следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных линз и, используя разнотолщинный рассеиватель, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной, после прохождения рассеивателя с помощью системы согласующих магнитных линз формируют протонный пучок с параметрами, соответствующими параметрам области исследования и последующей магнитооптической системы формирования протонного изображения, и просвечивают область исследования, пропуская поочередно протонные сгустки различной ширины, при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами, после чего прошедший протонный пучок направляют в магнитооптическую систему формирования протонного изображения, состоящую, по крайней мере, из двух различных по апертуре линзовых систем, апертура каждого набора соответствует протонному пучку определенной ширины, оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах.

Изобретение относится к устройствам точной механики и может быть использовано в системах сближения зонда и образца в сканирующей зондовой микроскопии. Координатный стол содержит первый базовый элемент 1 с первой направляющей 2 по первой координате X, на котором установлен второй базовый элемент 3 со второй направляющей 4 по первой координате X и третий базовый элемент 5 с третьей направляющей 6 по первой координате X.

Изобретение относится к области черной металлургии и может быть использовано для отбора проб расплавленного металла из различных металлургических агрегатов с целью их дальнейшего исследования различными способами на содержание химических веществ.

Изобретение относится к испытательной технике, а именно к образцам, и позволяет испытывать полимерные композиционные материалы (ПКМ) на сдвиг в плоскости листа, а точнее высокомодульные углепластики, с укладкой слоев под углом ±45°.
Изобретение относится к области ветеринарии и предназначено для диагностики нематодозов жвачных животных. Способ сбора и фиксации нематод, паразитирующих в сычуге и тонком кишечнике жвачных животных, включает извлечение сычуга и тонкого кишечника с содержимым во время патологоанатомического вскрытия.

Изобретение относится к области экологических и радиоэкологических исследований и предназначено для оценки содержания и распределения химических элементов, в том числе радионуклидов в почвенном слое.

Изобретение относится к методам пробоподготовки биоорганических, в том числе медицинских образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Группа изобретений относится к технологии и технике отбора проб жидкости из газожидкостного потока в трубопроводе и может найти применение в нефтедобывающей и других отраслях промышленности, где требуется осуществление отбора представительной пробы ручным или автоматическим способом.

Изобретение относится к устройству для размещения объектов, подлежащих медицинскому исследованию посредством продувки. Устройство содержит средство крепления контейнера, узел всасывания со средством выталкивания и всасывания воздуха, узел нагнетания воздуха для создания, средство перемещения фильтра к узлу всасывания и узлу нагнетания воздуха.

Изобретение относится к прокатному и кузнечно-прессовому производству при исследовании напряженно-деформированного состояния металла в различных процессах пластического формоизменения.

Изобретение относится к области радиохимии и может быть использовано при подготовке разведенных порций высокоактивных растворов в условиях каньонов, тяжелых боксов или защитных камер в целях анализа состава этих растворов.

Изобретение относится к горной промышленности, в частности к системе вентиляции угольной шахты и устройству для извлечения метана из рудничного воздуха. Технический результат заключается в предотвращении взрывов из-за скоплений метановоздушной смеси под кровлей с возможностью последующей концентрации метановоздушной смеси для дальнейшего использования.
Наверх