Способ выделения циклогексанона из реакционной смеси вода - ацетонитрил - циклогексен - циклогексанон

Изобретение может быть использовано в технологии основного органического синтеза для выделения циклогексанона высокой степени чистоты, применяемого в качестве сырья для получения капролактама. Способ включает получение циклогексанона окислением циклогексена, выделение циклогексанона из смеси вода - ацетонитрил - циклогексен - циклогексанон любого состава за счет сочетания в технологической схеме автоэкстрактивной ректификации со среднелетучим разделяющим агентом ацетонитрилом и трехфазного расслаивания во флорентийском сосуде с последующей подачей каждого слоя в ректификационные колонны. Технологическая схема в предпочтительном варианте включает четыре ректификационные колонны и флорентийский сосуд. Изобретение обеспечивает разделение реакционной смеси любого состава на практически чистые компоненты, удовлетворяющие требованиям качества товарных продуктов. 1 з.п. ф-лы, 2 ил., 4 пр.

 

Изобретение относится к технологии основного органического синтеза, а именно к способу выделения циклогексанона из реакционной смеси, получаемой в результате окисления циклогексена в ацетонитрильно-водной среде. Циклогексанон находит применение в качестве сырья для производства капролактама.

Хорошо изучены процессы получения циклогексанона окислением циклогексана или дегидрированием циклогексанола. В результате реакций образуются многокомпонентные смеси, содержащие циклогексан, циклогексанол, циклогексанон, воду, тяжелокипящие примеси.

Наиболее близкими к предлагаемому способу являются технологические решения по выделению товарного циклогексанона, полученного разными методами, описанные ниже.

Разделение смеси, образующейся в результате окисления циклогексана, осуществляют в четырехколонном комплексе с флорентийским сосудом [патент RU 2373181 С2 (Родиа Шими), дата публикации 20.01.2009]. На первом этапе в первой колонне происходит разделение смеси на тяжело- и легкокипящую фракции. Тяжелокипящая фракция направляется во вторую колонну, в дистилляте которой происходит выделение циклогексанона чистотой 99,8%. Куб колонны содержит циклогексанон, циклогексанол и тяжелые примеси. Данная смесь подвергается дальнейшему разделению, в результате которой отгоняемая фракция с циклогексанолом отправляется в блок химического превращения. Дистиллят первой колонны, содержащий воду и легкокипящие компоненты, после отделения в сепараторе водной фазы, обрабатывают как отходы.

Разделение смеси, образующейся в результате дегидрирования циклогексанола [патент US 2845384 A (Allied Chemical Corporation) дата публикации 29.07.1958], проводится в комплексе ректификационных колонн, работающих под разными давлениями, и двух флорентийских сосудов. Для удаления легкокипящих компонентов в первую колонну подают дополнительно циклогексен. Основная его функция - извлечение воды из раствора путем образования гетероазеотропа с минимальной температурой кипения. Количество вводимого циклогексена определяется количеством воды в исходной смеси. Дистиллят первой колонны, работающей при атмосферном давлении, направляют во флорентийский сосуд. Слой, обогащенный циклогексеном, идет на орошение колонны, а водный слой на дальнейшую очистку, после которой вода с органическими примесями не более 0,1% сбрасывается в канализацию. Куб колонны, содержащий циклогексанон, циклогексанол и тяжелокипящие примеси, отправляется в ректификационную колонну, работающую при пониженном давлении. Понижение давления позволяет увеличить относительную летучесть целевых компонентов. Чистота полученного в дистилляте колонны циклогексанона составляет 99,9%.

Недостатком вышеприведенных методов является то, что возможность реализации методов ограничена составами реакционной смеси, поступающей в блок ректификационного разделения.

В качестве ближайшего аналога настоящего изобретения может быть выбрано техническое решение, раскрытое в документе [патент RU 2205175 С1 (Институт катализа им. Г.К. Борескова СО РАН) 27.05.2003]. В документе раскрывается способ выделения циклогексанона, полученного окислением циклогексена.

Отличие настоящего изобретения от ближайшего аналога состоит в том, что выделение циклогексанона осуществляют из смеси вода-ацетонитрил-циклогексен-циклогексанон путем сочетания в технологической схеме автоэкстрактивной ректификации со среднелетучим разделяющим агентом ацетонитрилом и трехфазного расслаивания во флорентийском сосуде с последующей подачей каждого слоя в ректификационные колонны.

Технический результат, достигаемый настоящим изобретением, заключается в осуществлении разделения реакционной смеси любого состава на практически чистые компоненты, т.е. компоненты, удовлетворяющие существующим требованиям качества товарных продуктов.

Технический результат достигается способом выделения циклогексанона, полученного окислением циклогексена, из смеси вода-ацетонитрил-циклогексен-циклогексанон любого состава за счет сочетания в технологической схеме автоэкстрактивной ректификации со среднелетучим разделяющим агентом ацетонитрилом и трехфазного расслаивания во флорентийском сосуде с последующей подачей каждого слоя в ректификационные колонны.

Основная идея заключается в использовании на первой стадии разделения автоэкстрактивной ректификации со среднелетучим агентом ацетонитрилом (2'), который повышает летучесть воды (1') и циклогексена (3') относительно циклогексанона (4'). Основное условие - получить в кубе экстрактивной колонны циклогексанон (4'), при этом допускается присутствие в данной фракции ацетонитрила (2'). В дистилляте экстрактивной колонны выделяется смесь вода (1') - ацетонитрил (2') - циклогексен (3'). Для полного выделения циклогексанона (4') наличие его примесей в дистилляте не допускается.

Выделение чистого циклогексанона (4') осуществляют в кубе ректификационной колонны 5, дистиллятом которой является ацетонитрил (2'), направляемый в колонну автоэкстрактивной ректификации 1 через теплообменник 6.

Трехкомпонентная смесь вода (1') - ацетонитрил (2') - циклогексен (3') может быть разделена с использованием флорентийского сосуда (8) и трех отгонных колонн (фиг. 1) для выделения всех компонентов в количествах, содержащихся в исходной смеси, или достаточно выделение ацетонитрила (2') в отгонной колонне 3 в количестве, необходимом для компенсации разделяющего агента. Дистиллят колонны 3 вместе с циклогексеновым и водным слоем направляется в блок химического превращения.

Для ряда составов исходной смеси предлагается принципиальная технологическая схема (фиг. 2), состоящая из четырех ректификационных колонн и флорентийского сосуда. На первом этапе в кубе колонны 1 происходит полное выделение циклогексанона (4'). Примеси других компонентов в кубе колонны не допускаются. Дистиллят колонны 1 содержит воду (1'), ацетонитрил (2') и циклогексен (3'). Данная смесь может быть направлена в блок химического превращения или разделена с использованием трех ректификационных колонн (2-4) и флорентийского сосуда (8). Такое разделение возможно, если состав дистиллята первой колонны принадлежит области трехфазного расслаивания.

Изобретение иллюстрируется следующими примерами:

Пример 1.

Разделению подлежит смесь эквимолярного состава в количестве 100 кмоль/ч. Автоэкстрактивную ректификацию осуществляют в колонне 1 с рабочим давлением 760 мм рт.ст. при флегмовом числе, равном трем. Число теоретических тарелок равно 25. Исходная смесь подается на 15 тарелку. Экстрактивный агент (ацетонитрил) направляют в верхнюю часть колонны 1 на 9 тарелку в количестве 200 кмоль/ч. С верха колонны 1 отбирают 110 кмоль/ч фракции, содержащей 22,7% воды, 54,6% ацетонитрила и 22,7% циклогексена. Кубовый продукт экстрактивной ректификации из колонны 1 в количестве 190 кмоль/ч направляют в колонну 5, работающую при атмосферном давлении. Эффективность колонны 5-10 теоретических тарелок. Питание осуществляется на седьмую тарелку при флегмовом числе, равном двум. С верха колонны 5 отводят ацетонитрил (2') в количестве 165 кмоль/ч и чистотой 99,9%. Кубовый продукт колонны в количестве 25 кмоль/ч содержит товарный циклогексанон (4') чистотой 99,9% мол.

Дистиллят колонны 1 охлаждают в теплообменнике 7 до 20-25°С и направляют во флорентийский сосуд 8, в котором происходит расслаивание на три слоя. Каждый слой направляется в отгонные колонны 2-4, работающие при атмосферном давлении. Эффективность колонн составляет 7-8 теоретических тарелок. В кубах колонн 2, 3 и 4 получаем товарные циклогексен (99,9% и 25 кмоль/ч), ацетонитрил (99,5% и 60 кмоль/ч) и воду (99,9% и 25 кмоль/ч) соответственно. После смешения дистилляты колонн 2-4 охлаждаются до 20-25°С в теплообменнике 7 и подаются во флорентийский сосуд 8.

Часть ацетонитрила (2') в количестве 35 кмоль/ч, получаемого в колонне 3, смешивается с ацетонитрилом (2') из колонны 5 и после охлаждения в теплообменнике 6 до 70°С возвращается на рецикл в колонну 1.

Таким образом, результатом предлагаемого способа разделения является полное выделение товарного циклогексанона (4'), а также других продуктов товарного качества, которые могут направляться в блок химического превращения или на склад.

Пример 2.

Разделению подлежит смесь состава: воды - 50%, ацетонитрила - 20%, циклогексена - 5%, циклогексанона - 25%. Количество исходной смеси - 100 кмоль/ч. Разделение смеси проводится в ректификационном комплексе, представленном на фиг. 1. Поскольку исходная смесь содержит избыток воды (1'), для ее отделения от циклогексанона (4') потребуется большее количество разделяющего агента - ацетонитрила (2') по сравнению с Примером 1, а именно: соотношение исходная смесь : разделяющий агент = 1:3. Параметры работы экстрактивной колонны 1: давление - 760 мм рт.ст., эффективность - 25 теоретических тарелок, подача экстрактивного агента на 7 тарелку, исходной смеси - на 17 тарелку, флегмовое число - 2,5. В результате разделения смеси получаем фракции следующего состава: дистиллят (162 кмоль/ч) - 30,4% воды; 66,5% ацетонитрила; 3,1% циклогексена; куб (238 кмоль/ч) - 89,5%) ацетонитрила; 10,5% циклогексанона.

Смесь ацетонитрила (2') и циклогексанона (4') подается в колонну 5, работающую при следующих условиях: давление - 760 мм рт.ст., эффективность - 10 теоретических тарелок, тарелка питания - седьмая, флегмовое число - 0,8. Результат разделения: дистиллят - 99,9% мол. ацетонитрила (213 кмоль/ч); куб - 99,8% циклогексанона (25 кмоль/ч).

Разделение трехкомпонентной смеси, образующейся в дистилляте колонны 1, проводится аналогично Примеру 1 при тех же условиях работы флорентийского сосуда (760 мм рт.ст. и 20-25°С) и режимных параметрах колонн 2-4. Кубовый поток колонны 3 разделяется на два потока: 20 кмоль/ч и 87 кмоль/ч. Последний смешивается с дистиллятом колонны 5 и после охлаждения в теплообменнике 6 возвращается в колонну 1.

Пример 3.

Разделению подлежит смесь в количестве 100 кмоль/ч следующего состава: воды - 15%, ацетонитрила - 30%, циклогексена - 15%, циклогексанона - 40%. Параметры работы колонны 1: 760 мм рт.ст., эффективность - 10 теоретических тарелок, тарелка питания - шестая, флегмовое число - 0,6-0,7. В кубе колонны происходит выделение товарного циклогексанона (40 кмоль/ч и 99,9% мол.), дистиллят (60 кмоль/ч) содержит тройную смесь вода (25% мол.) - ацетонитрил (50% мол.) - циклогексен (25% мол.). Данная смесь направляется в комплекс трех отгонных колонн (2-4) и флорентийского сосуда (8) с получением товарных продуктов чистотой не менее 99%. Параметры работы колонн аналогичны Примеру 1.

Пример 4.

Разделению подлежит смесь в количестве 100 кмоль/ч следующего состава: воды - 20%, ацетонитрила - 50%, циклогексена - 5%, циклогексанона - 25%. Параметры работы колонны 1: 760 мм рт.ст., эффективность - 10 теоретических тарелок, тарелка питания - пятая, флегмовое число - единица. В кубе колонны происходит выделение товарного циклогексанона (25 кмоль/ч и 99,9% мол.), дистиллят (75 кмоль/ч) содержит тройную смесь вода (26,7% мол.) - ацетонитрил (66,7% мол.) - циклогексен (6,6% мол.). Данная смесь возвращается в блок химического превращения.

1. Способ выделения циклогексанона, полученного окислением циклогексена, отличающийся тем, что выделение циклогексанона ведут из смеси вода – ацетонитрил – циклогексен - циклогексанон любого состава за счет сочетания в технологической схеме автоэкстрактивной ректификации со среднелетучим разделяющим агентом ацетонитрилом и трехфазного расслаивания во флорентийском сосуде с последующей подачей каждого слоя в ректификационные колонны.

2. Способ выделения циклогексанона по п. 1, отличающийся тем, что технологическая схема включает четыре ректификационные колонны и флорентийский сосуд.



 

Похожие патенты:

Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама. Заявленный катализатор дегидрирования циклогексанола в циклогексанон включает карбонат кальция, оксид цинка, дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-2,5; смесь терморасширенного графита и шунгита - 0,5-1,5.
Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Изобретение относится к способу кислотного разложения технического гидропероксида кумола в последовательно установленных реакторах при повышенном давлении и повышенной температуре с подачей в реакторы дополнительного количества ацетона в расчете на подаваемый гидропероксид с управлением процессом разложения гидропероксида.

Изобретение относится к способу получения цис-конденсированного бициклического производного формулы (II) из соответствующего транс-конденсированного бициклического производного формулы (I), который включает стадию взаимодействия указанного транс-конденсированного бициклического производного с гидридным основанием формулы М-Н, где М представляет собой атом IA группы.

Изобретение относится к способу гидрирования фенола на палладиевом катализаторе (0,5% мас. Pd на сверхсшитом полистироле (СПС)) в избытке водорода при соотношении водород:фенол=4-5:1 (мольное) при атмосферном давлении.
Изобретение относится к способу дегидрирования циклогексанола в циклогексанон. Предложенный способ дегидрирования циклогексанола в циклогексанон осуществляют в газовой фазе при повышенной температуре в присутствии катализатора, содержащего активные компоненты, на 56÷88 мас.% состоящие из оксида цинка и на 8,0÷39,0 мас.% из карбоната кальция.

Изобретение относится к способам очистки циклогексанона. Описан способ очистки циклогексанона, полученного окислением циклогексана кислородом воздуха или дегидрированием циклогексанола, в котором процесс ректификации ведут в разрезной вакуумной ректификационной колоне (2 колонны), где дистиллят первой колонны является питанием для второй колонны; из куба первой колонны выводят смесь циклогексанола и высококипящих примесей на дальнейшее разделение, а куб второй колонны является флегмой для первой - в нее при этом вводится раствор щелочи (КОН) в циклогексаноле, эквивалентный содержанию эфиров.

Изобретение относится к способу получения метилового эфира (3aR, 4S, 7aR)-4-гидрокси-4-м-толилэтинилоктагидроиндол-1-карбоновой кислоты формулы (I), с использованием новых промежуточных соединений формул (II) и (III) 7 н.

Изобретение относится к барботажному реактору окисления циклогексана, включающему устройства подачи и распределения воздуха или инертной среды - азота с каналами подачи и поперечные перегородки с отверстиями.

Изобретение относится к установке каскадного окисления циклогексана, включающей, по меньшей мере, два реактора, снабженных, по меньшей мере, одной перепускной трубой, соединенной со штуцером вывода из первого или предыдущего реактора ко второму или последующему, от внутренних пристеночной полости или бачка, скрепленных с опускной трубой.
Изобретение относится к способу приготовления катализатора для дегидрирования циклогексанола в циклогексанон. Данный способ включает нанесение активного компонента - меди из водного раствора аммиачно-карбонатного комплекса на оксидный твердый носитель, термическую обработку и гранулирование.

Настоящее изобретение относится к способу получения насыщенного алифатического кетона, представленного общей формулой (2): (где n указывает целое число от 1 до 3; R представляет гидроксильную группу, циклогексильную группу, алкильную группу, имеющую от 1 до 4 атомов углерода, или ацильную группу, имеющую от 1 до 4 атомов углерода), используемого в качестве исходного материала для производства лекарств, агрохимических средств, оптических функциональных материалов и функциональных материалов для электроники.

Изобретение относится к способу окисления циклических алканов окислительным агентом с получением продукта, в котором окисление проводят в ректификационной колонне, содержащей на нижнем конце кубовую зону, на верхнем конце головную зону и между кубовой и головной зонами реакционную зону, в реакционной зоне реакционную смесь поддерживают в состоянии кипения и окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках, при этом покидающее реакционную зону, непрореагировавшее исходное сырье рециркулируют в реакционную зону, в качестве окислительного агента используют содержащий молекулярный кислород газ, а ниже реакционной зоны отбирают содержащую продукт реакционную смесь.

Изобретение относится к способу управления процессом получения циклогексанола или циклогексанона гидрированием фенола или бензола водородом в присутствии катализатора и разбавителя с последующей гидратацией в случае использования бензола в качестве исходного продукта.

Изобретение относится к усовершенствованному способу разложения гидропероксида с образованием смеси, содержащей соответствующие спирт и кетон, включающему стадии: а) добавления воды в количестве 0,5-20% в смесь, содержащую гидропероксид; b) удаления объема указанной воды таким способом, что вместе с водой удаляются водорастворимые примеси; с) удаления оставшейся воды таким способом, что в реакционной смеси остается не более чем 2% воды; и d) разложения указанного гидропероксида путем контактирования реакционной смеси с каталитическим количеством гетерогенного катализатора, содержащего золото, нанесенного на носитель.

Настоящее изобретение относится к способу для эффективного отделения бутенов и бутанов посредством экстрактивной перегонки с использованием полярного растворителя и к системе для его осуществления.
Изобретение относится к способу проведения процесса абсорбции летучего вещества, представляющего собой воду, аммиак или диоксид углерода, из газовой фазы жидким абсорбентом, содержащим ионную жидкость и способствующую смачиванию добавку, путем введения газовой фазы в контакт с пленкой абсорбента.

Настоящее изобретение относится к полунепрерывному дезодоратору для рафинирования жиров и/или масел пищевого назначения. Описан полунепрерывный дезодоратор для рафинирования жиров и/или масел пищевого назначения, содержащий по меньшей мере одну десорбционную секцию, отличающийся тем, что десорбционная секция содержит подающую буферную тарелку (1) для сбора жиров и/или масел, средство (2), регулирующее поток жидкости для регулирования потока жиров и/или масел из подающей буферной тарелки (1), распределитель (3) жидкости для распределения потока жиров и/или масел по структурированной насадке (4), которая обеспечивает контакт между потоком жиров и/или масел и десорбционным агентом в противотоке, и приемную тарелку (5) для сбора потока жиров и/или масел со структурированной насадки (4), причем полунепрерывный дезодоратор также содержит один или более внутренних каналов, или один или более наружных каналов, или комбинации внутренних каналов и наружных каналов для десорбционного агента и летучих веществ, причем упомянутые каналы выполнены с возможностью сбора потоков десорбционного агента из одной или более тарелок и соединены с впуском для газа десорбционных секций для повторного использования десорбционного агента в режиме противотока.
Наверх