Способ устранения импульсных помех на цветных изображениях



Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях
Способ устранения импульсных помех на цветных изображениях

 


Владельцы патента RU 2618390:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к технологиям обработки цифровых изображений. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности восстановления элементов цветного изображения, искаженных импульсными помехами. Предложен способ устранения импульсных помех на цветных изображениях. Способ заключается в обнаружении искаженных элементов и последующей векторной медианной фильтрации искаженных элементов. Согласно способу дополнительно проверяют наличие либо отсутствие искажений элементов в каждой цветовой компоненте. В случае если элементы искажены не во всех компонентах, то выбирают элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию элементов в искаженной компоненте по соответствующим выбранным элементам неискаженных компонент. В случае если элементы искажены во всех компонентах, то выполняют векторную медианную фильтрацию элементов трех цветовых компонент, и в случае если искажения элементов отсутствуют во всех компонентах, то элементы трех цветовых компонент сохраняют без изменений. 5 ил.

 

Изобретение относится к области цифровой обработки изображений и может быть использовано в фото, видео и оптико-электронной технике при решении задач устранения импульсных помех (ИП) на регистрируемых цветных цифровых изображениях.

Известен способ устранения ИП на основе порядковых статистик, в частности медианная фильтрация (см., например, Хуанг Т.С., Эклунд Дж.-О., Нуссбаумер Г.Дж., Зохар Ш., Юстуссон Б.И., Тян Ш.-Г. Быстрые алгоритмы в цифровой обработке изображений./Под ред. Т.С. Хуанга: Пер. с англ. М.: Радио и связь, 1984. 224 с.). Медианный фильтр представляет собой локальный нелинейный фильтр, выход которого определяется как медиана элементов, попавших в его апертуру. Недостатком медианного фильтра является дополнительное искажение верхних частот изображения (размытие краев и текстур).

Известен способ устранения ИП (см., например, Самойлин Е.А. Нелинейные алгоритмы фильтрации импульсного шума на изображениях // Автометрия, 2005. Т. 41. №5. С. 26-32), основанный на предварительном обнаружении искаженных элементов и их медианной фильтрации. Такой способ позволяет снизить вносимые искажения. Однако в случае цветного (векторного) изображения (с компонентами R - красная, G - зеленая и В - синяя) применение покомпонентной медианной фильтрации приводит к изменению цветовых характеристик изображения (тона и насыщенности). Это связано с тем, что при независимой фильтрации компонент получаются новые значения этих компонент. Результирующий вектор может совпадать с элементом апертуры фильтра только в частном случае. Следовательно, при покомпонентной фильтрации элемент цветного изображения заменяется некоторым другим элементом с новыми характеристиками цветности, что эквивалентно генерированию дополнительного цветового шума.

Наиболее близким по технической сущности и достигаемому результату является способ-прототип (см., например, Можейко В.И., Фисенко В.Т., Фисенко Т.Ю. Адаптивный метод ранговой многоканальной фильтрации для подавления шумов в цветных изображениях // Изв. вузов. Приборостроение, 2009. Т. 52. №8. С. 30-37), основанный на предварительном обнаружении элементов цветного изображения, искаженных импульсными помехами и их векторной медианной фильтрации, показывающий свое преимущество в обработке цветных изображений по сравнению с покомпонентной медианной фильтрацией.

Недостатком способа-прототипа является низкая точность восстановления элементов цветного изображения, искаженных ИП, обусловленная ограниченностью фильтра только выборкой элементов апертуры, а также независимостью применения фильтра для случаев, если искажены не все элементы цветовых компонент.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности восстановления элементов цветного изображения искаженных ИП.

Технический результат достигается тем, что в отличие от известного способа-прототипа устранения ИП на цветных изображениях, заключающегося в обнаружении искаженных элементов и последующей векторной медианной фильтрации искаженных элементов, дополнительно проверяют наличие либо отсутствие искажений элементов в каждой цветовой компоненте, далее в случае если элементы искажены не во всех компонентах, то выбирают элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию элементов в искаженной компоненте по соответствующим выбранным элементам неискаженных компонент, в случае если элементы искажены во всех компонентах, то выполняют векторную медианную фильтрацию элементов трех цветовых компонент, и в случае если искажения элементов отсутствуют во всех компонентах, то элементы трех цветовых компонент сохраняют без изменений.

Рассмотрим существо предлагаемого способа. На первом этапе обнаруживают элементы, искаженные ИП в каждой цветовой компоненте изображения. Для этих целей могут быть использованы любые известные покомпонентные алгоритмы обнаружения (см., например, Самойлин Е.А. Алгоритмы оценивания импульсного шума в задачах цифровой фильтрации оптических изображений // Оптический журнал, 2006. Т. 73. №12. С. 42-46). Эти обнаружители формируют бинарные матрицы оценок положения искаженных элементов каждой компоненты:

где - трехкомпонентная матрица оценок элементов изображения;

- элементы компонент матрицы оценок элементов изображения;

R, G, B - красная, зеленая и синяя компоненты соответственно;

i - номер строки матрицы;

j - номер столбца;

m - число строк матрицы;

n - число ее столбцов.

На следующем этапе проверяют наличие либо отсутствие искажений элементов в i,j-й координате каждой цветовой компоненты изображения.

В случае если в i,j-й координате помехой искажены не все i,j-е элементы компонент, на что указывают комбинации оценок ,

то выбирают i,j-е элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию i,j-го элемента в искаженной компоненте по соответствующим выбранным i,j-м элементам в неискаженных компонентах. Это может быть осуществлено по алгоритму реализации межканальной градиентной реконструкции (см., например, Самойлин Е.А., Шипко В.В. Межканальная градиентная реконструкция искаженных импульсными помехами цветных цифровых изображений // Автометрия, 2014. Т. 50. №2. С. 22-30).

В случае если в i,j-й координате помехой искажены все i,j-е элементы компонент, на что указывает комбинация оценок , то выполняют векторную медианную фильтрацию i,j-х элементов трех цветовых компонент, как в прототипе.

В случае если в i,j-й координате отсутствуют искажения i,j-х элементов во всех компонентах, на что указывает комбинация оценок , то i,j-е элементы трех цветовых компонент сохраняют без изменений.

На фиг. 1 представлена блок-схема устройства, с помощь которого может быть реализован предлагаемый способ. Блок-схема устройства содержит блок обнаружения искаженных элементов изображения 1, блок проверки наличия либо отсутствия искажений элементов в каждой цветовой компоненте изображения 2, блок выбора неискаженных элементов цветовых компонент 3, блок межканальной градиентной реконструкции искаженных элементов компонент изображения 4, блок векторной медианной фильтрации искаженных элементов изображения 5, блок сохранения элементов изображения 6.

Устройство на фиг. 1 работает следующим образом. На вход устройства поступает цветное изображение, которое параллельно подают на вход блока обнаружения искаженных элементов изображения 1 и вход блока проверки наличия либо отсутствия искажений элементов в каждой цветовой компоненте изображения 2, где по комбинациям бинарных оценок , поступающих с блока 1, определяют дальнейшие действия над элементами цветного изображения. В случае если в i,j-й координате помехой искажены не все i,j-тые элементы компонент, на что указывают комбинации оценок , то в блоке 3 выбирают i,j-тые элементы неискаженных компонент по оценкам. поступающим с блока 1, далее в блоке 4 выполняют межканальную градиентную реконструкцию i,j-го элемента в искаженной компоненте по соответствующим выбранным i,j-м элементам в неискаженных компонентах. В случае если в i,j-й координате помехой искажены все i,j-е элементы компонент, на что указывает комбинация оценок , то в блоке 5 выполняют векторную медианную фильтрацию i,j-х элементов трех цветовых компонент. В случае если в i,j-й координате отсутствуют искажения i,j-х элементов во всех компонентах, на что указывает комбинация оценок , то i,j-е элементы трех цветовых компонент сохраняют без изменений в блоке 6. Выходом устройства является совокупность выходов с блоков 4-6.

Рассмотрим пример.

На фиг. 2 представлены исходное (неискаженное) тестовое цветное изображение и его выделенный (белым цветом) фрагмент размером 3×3 элемента, показаны R, G, В компоненты этого фрагмента с их численными значениями. На фиг. 3 представлено изображение фиг. 2, но искаженное импульсными помехами, где центральный элемент фрагмента искажен импульсной помехой в компоненте G. На фиг. 4 представлен результат обработки искаженного изображения фиг. 3 по способу-прототипу. На фиг. 5 с целью демонстрации достигаемого технического результата представлен результат обработки искаженного изображения, приведенного на фиг. 3, устройством обработки изображений фиг. 1 на основе предлагаемого способа. Сопоставляя результаты устранения ИП известным и предлагаемым способами, т.е. фиг. 4 и фиг. 5 с исходным изображением без помех фиг. 2, можно видеть, что заявляемый способ позволяет получить лучший результат, поскольку отсутствуют дополнительные искажения соседних неискаженных компонент, а искаженная компонента элемента изображения восстанавливается с более высокой точностью.

Таким образом, предлагаемый способ позволяет повысить точность восстановления элементов цветного изображения, искаженных ИП, за счет проверки наличия либо отсутствия искажений элементов в каждой компоненте, ограничении выполнения векторной медианной фильтрации исключительно для случая наличия искаженных элементов во всех компонентах и выполнении межканальной градиентной реконструкции в случае, если элементы искажены не во всех компонентах. Тем самым предлагаемый способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ устранения ИП на цветных изображениях, заключающийся в том, что обнаруживают искаженные элементы, проверяют наличие либо отсутствие искажений элементов в каждой цветовой компоненте, в случае если элементы искажены не во всех компонентах, то выбирают элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию элемента в искаженной компоненте по соответствующим выбранным элементам неискаженных компонент, в случае если элементы искажены во всех компонентах, то выполняют векторную медианную фильтрацию элементов трех цветовых компонент, в случае если искажения элементов отсутствуют во всех компонентах, то элементы трех цветовых компонент сохраняют без изменений.

Предлагаемое техническое решение является промышленно применимым, так как для его реализации могут быть использованы любые известные из уровня техники программируемые и непрограммируемые процессоры цифровой обработки сигналов и изображений (см., например, URL: http://module.ru/catalog/).

Способ устранения импульсных помех на цветных изображениях, заключающийся в обнаружении искаженных элементов и последующей векторной медианной фильтрации искаженных элементов, отличающийся тем, что дополнительно проверяют наличие либо отсутствие искажений элементов в каждой цветовой компоненте, в случае если элементы искажены не во всех компонентах, то выбирают элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию элементов в искаженной компоненте по соответствующим выбранным элементам неискаженных компонент, в случае если элементы искажены во всех компонентах, то выполняют векторную медианную фильтрацию элементов трех цветовых компонент, и в случае если искажения элементов отсутствуют во всех компонентах, то элементы трех цветовых компонент сохраняют без изменений.



 

Похожие патенты:

Изобретение относится к области стеганографии, а именно к способам встраивания сообщения в цифровое изображение. Техническим результатом является обеспечение возможности скрытой передачи конфиденциальных данных, используя контейнер, представленный в виде фрактально сжатого изображения.

Изобретение относится к технологиям обработки видеоизображений. Техническим результатом является сокращение памяти, необходимой для хранения видеоизображений, за счет того, что каждое из видеоизображений запоминается с разрешением, пропорциональным весовому коэффициенту.

Изобретение относится к стеганографии. Техническим результатом является обеспечение возможности скрытой передачи конфиденциальных данных, используя контейнер, представленный в виде фрактально сжатого изображения.

Изобретение относится к цифровой обработке сигналов, а именно к области выполнения обратимого дискретного вейвлет-преобразования. Технический результат заключается в обеспечении восстановимости сигнала при смене направления обработки после прямого вейвлет-преобразования.

Изобретение относится к системам обработки изображений. Техническим результатом является повышение качества восстановленных данных.

Изобретение относится к технике передачи телевизионных сигналов с использованием кодирования. .

Изобретение относится к области электросвязи, а именно к способам сжатия видеоизображений и передачи по цифровым каналам связи. .

Изобретение относится к области телевидения и цифровой обработки видеоинформации, а именно к способам декодирования сжатых видеоданных, и предназначено для проектирования систем декодирования на основе трехмерного дискретного косинусного преобразования (ДКП-3D) видеоданных.

Изобретение относится к телевизионным системам, в частности к системам, в которых телевизионный сигнал передается по одному или нескольким параллельным каналам при ширине полосы пропускания каждого канала меньшей, чем ширина спектра телевизионного сигнала, и может быть использовано в устройствах кодирования видеоданных, работающих в реальном масштабе времени.

Изобретение относится к средствам формирования комбинированного изображения. Техническим результатом является повышение качества сформированного изображения.

Изобретение относится к трехмерному визуальному представлению изображений и, более конкретно, к морфологическому сглаживанию (МС) при повторном проецировании одного или более двухмерных изображений.

Изобретение относится к использованию методов психологии, психофизиологии, оптике, физиологии в системах контроля объектов досмотра ручной клади с применением рентгеновских установок.

Изобретение относится к области цифровой телевизионной микроскопии и может быть использовано при автоматизации процессов детального обследования объектов. .

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в сканирующих устройствах современных автоматизированных баллистических идентификационных комплексах для записи и ввода в систему изображений микрорельефа боковых поверхностей стреляных пуль и дна стреляных гильз.
Изобретение относится к средствам обработки, захвата и передачи текста и смешанной информации, содержащей знаки и изображения. .

Изобретение относится к области оптического формирования изображения, в частности к устройствам снятия отпечатков пальцев. .

Изобретение относится к области телевизионной техники и может быть использовано для телевизионного фотографирования. .

Изобретение относится к телевизионной микроскопии и может быть использовано в промышленности при автоматизации контроля качества и, особенно, криминалистике для проведения баллистических экспертиз пуль стрелкового оружия, а также создания и хранения банка данных пулетек для последующей идентификации оружия по следам на пулях.

Изобретение относится к автоматике, в частности к устройству для распознания видов передач, и может быть использовано при построении распознающих автоматов для комплексов технического анализа сигналов.

Изобретение относится к области цифровой обработки изображений. Техническим результатом является повышение чувствительности градиентного способа выделения контуров к полезным яркостным перепадам изображения в условиях импульсных помех.
Наверх