Способ гидравлического разрыва продуктивного пласта с глинистым прослоем и газоносным горизонтом

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП), содержащего прослой глины с газоносным горизонтом. Способ включает выполнение перфорации в интервале продуктивного пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины, распакеровку пакера и его извлечение с колонной НКТ из скважины. Ориентированную перфорацию производят с помощью гидромеханического перфоратора с ориентирующим переводником, процесс ГРП начинают с закачки гидроразрывной жидкости, в качестве которой используют сшитый гель для создания трещины в продуктивном пласте, после чего созданную трещину развивают закачкой линейного геля плотностью 1150 кг/м3 со сверхлегким проппантом плотностью 1050 кг/м3 фракции 40/80 меш массой 3 т с концентрацией 200 кг/м3, затем производят крепление трещины закачкой сшитого геля с проппантом фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта порциями со ступенчатым увеличением концентрации проппанта на 100 кг/м3, начиная от 200 кг/м3 до 900 кг/м3. При этом в продуктивном пласте с проницаемостью от 0,01 до 100 мД при креплении трещины закачивают сшитый гель с проппантом фракции 20/40 меш, а в продуктивном пласте с проницаемостью от 100 до 500 мД при креплении трещины закачивают сшитый гель с проппантом фракции 12/18 меш. Технический результат заключается в: повышении надежности создания и развития трещины при наличии выше продуктивного пласта глинистого прослоя и газоносного горизонта; повышении эффективности способа; снижении гидравлических сопротивлений в интервале перфорации; сокращении продолжительности и трудоемкости технологического процесса реализации способа. 4 ил.

 

Изобретение относится к области нефтегазодобывающей промышленности, в частности может быть использовано для гидравлического разрыва пласта (ГРП), содержащего прослой глины с газоносным горизонтом.

Известен способ ГРП с глинистыми прослоями и подошвенной водой (патент RU №2544343, МПК Е21В 43/267, опубл. 20.03.2015 г., бюл. №8), включающий спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение гидроразрыва закачиванием через скважину по колонне НКТ с пакером в продуктивный пласт гидроразрывной жидкости с последующей закачкой проппанта через интервал перфорации низкопроницаемого пласта, стравливание давления из скважины. Дополнительно производят временную изоляцию интервала перфорации низкопроницаемого пласта, перфорируют интервал глинистого прослоя с использованием чередующихся зарядов большого диаметра и глубокого проникновения, затем спускают колонну НКТ с пакером в скважину так, чтобы нижний конец колонны НКТ находился на уровне кровли глинистого прослоя, осуществляют посадку пакера в скважине, производят ГРП с образованием трещин закачкой гидроразрывной жидкости по колонне НКТ через интервалы перфорации глинистого прослоя. В трещины закачивают оторочку сшитого геля на углеводородной основе в объеме 3-5 м3 с расходом 10 м3/мин, причем в качестве проппанта используют проппантную смесь, после чего производят крепление трещин порционной закачкой гидроразрывной жидкости и проппантной смеси, начиная с концентрации проппантной смеси 400 кг/м3 со ступенчатым увеличением ее концентрации на 200 кг/м3 в гидроразрывной жидкости в каждой порции и расходом 5 м3/мин, причем проппантную смесь готовят на устье скважины в следующем соотношении, мас. %: проппант 12/40 меш - 30%; проппант 18/20 меш - 30%; кварцевая мука - 40%. По окончании ГРП удаляют временную изоляцию интервала перфорации низкопроницаемого пласта и проводят перфорацию низкопроницаемого пласта с образованием гидравлической связи между стволом скважины и трещиной гидроразрыва.

Недостатками данного способа являются:

- во-первых, низкая надежность создания и развития трещины при наличии выше продуктивного пласта глинистого прослоя и газоносного или водоносного горизонта. Это обусловлено тем, что в процессе проведения ГРП трещина развивается вверх в ширину, а не в длину, что приводит к прорыву трещины при ее развитии в газоносный или водоносный горизонт. В итоге вода или газ из верхнего соответственно газоносного или водоносного горизонта прорывается в скважину уже в процессе ГРП;

- во-вторых, низкая эффективность крепления трещины, обусловленная низкой проводимостью трещины и, как следствие, слабым притоком нефти из продуктивного пласта в скважину. Пропускная способность трещины зависит от размера фракции проппанта, крепящего трещину, а точнее от расстояния между зернами проппанта, обеспечивающего пропускную способность трещины, когда пропускная способность трещины не соответствует объему притока нефти из продуктивного пласта в зависимости от его проницаемости, проводимость трещины снижается;

- в-третьих, высокие гидравлические сопротивления в интервале перфорации пласта увеличивают риск скачка давления в процессе продавки проппанта в трещину, возникновения аварийной ситуации и недостижения заданных параметров трещины (ширины, длины);

- в-четвертых, дополнительные затраты, так как по окончании ГРП удаляют временную изоляцию интервала перфорации низкопроницаемого пласта и проводят перфорацию низкопроницаемого пласта с образованием гидравлической связи между стволом скважины и трещиной гидроразрыва.

Наиболее близким по технической сущности является способ ГРП с глинистым прослоем и подошвенной водой (патент RU №2566542, МПК Е21В 43/26, опубл. 27.10.2015 г., бюл. №30), включающий спуск колонны НКТ с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины, распакеровку пакера и его извлечение с колонной НКТ из скважины. До спуска в скважину колонны НКТ с пакером геофизическими методами определяют ориентацию главного максимального напряжения в продуктивном пласте, затем в верхней половине продуктивного пласта осуществляют перфорацию, ориентированную в направлении главного максимального напряжения, затем отсекают нижнюю половину продуктивного пласта скважины, спускают колонну НКТ с пакером в скважину так, чтобы нижний конец колонны НКТ находился на уровне кровли продуктивного пласта, производят посадку пакера, осуществляют ГРП закачкой по колонне НКТ гидроразрывной жидкости, в качестве которой используют линейный гель с расходом 0,3 м3/мин с созданием трещины в продуктивном пласте, затем производят крепление трещины в продуктивном пласте в четыре цикла чередующейся закачкой по колонне НКТ через интервал ориентированной перфорации продуктивного пласта равными порциями линейного геля с облегченным проппантом 20/40 меш и равными порциями сшитого геля с добавлением соли NaCl с концентрацией 400 кг/м3, причем равные порции сшитого геля по объему в два раза меньше равных порций линейного геля, а количество равных порций сшитого геля на одну порцию меньше равных порций линейного геля, причем концентрацию облегченного проппанта 20/40 меш в линейном геле ступенчато увеличивают на 100 кг/м3 с первой по третью порции в каждом цикле, начиная с концентрации 100 кг/м3, в последнем четвертом цикле производят закачку одной порции линейного геля, содержащего облегченный проппант 16/20 меш с концентрацией 400 кг/м3, а затем производят закачку и продавку 15%-ного водного раствора соляной кислоты в трещину продуктивного пласта в объеме, равном половине суммы объемов линейного и сшитого гелей, закачанных в трещину в процессе крепления трещины.

Недостатками данного способа являются:

- во-первых, низкая надежность создания и развития трещины, при наличии выше продуктивного пласта глинистого прослоя и газоносного или водоносного горизонта. Это обусловлено тем, что в процессе проведения ГРП трещина развивается вверх в ширину, а не в длину, что приводит к прорыву трещины при ее развитии в газоносный или водоносный горизонт. В итоге вода или газ из верхнего соответственно газоносного или водоносного горизонта прорывается в скважину уже в процессе ГРП;

- во-вторых, низкая эффективность крепления трещины, обусловленная низкой проводимостью трещины и, как следствие, слабым притоком нефти из продуктивного пласта в скважину. Пропускная способность трещины зависит от размера фракции проппанта, крепящего трещину, а точнее от расстояния между зернами проппанта, обеспечивающего пропускную способность трещины, когда пропускная способность трещины не соответствует объему притока нефти из продуктивного пласта в зависимости от его проницаемости, проводимость трещины снижается;

- в-третьих, высокие гидравлические сопротивления в интервале перфорации пласта увеличивают риск скачка давления в процессе продавки проппанта в трещину, возникновения аварийной ситуации и недостижения заданных параметров трещины (ширины, длины);

- в-четвертых, длительный и трудоемкий технологический процесс реализации способа, связанный с многократными циклами закачки порций линейного геля с проппантом, чередующихся с порциями сшитого геля с добавлением соли NaCl и про давкой 15%-ного водного раствора соляной кислоты.

Техническими задачами изобретения являются повышение надежности создания и развития трещины, эффективности крепления трещины, а также снижение гидравлических сопротивлений в интервале перфорации при продавке проппанта в трещину, сокращение длительности и трудоемкости технологического процесса реализации способа.

Поставленные технические задачи решаются способом гидравлического разрыва продуктивного пласта с глинистым прослоем и газоносным горизонтом, включающим выполнение перфорации в интервале продуктивного пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб – НКТ - с пакером в скважину, посадку пакера, проведение гидравлического разрыва пласта – ГРП - закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины, распакеровку пакера и его извлечение с колонной НКТ из скважины.

Новым является то, что ориентированную перфорацию производят с помощью гидромеханического перфоратора с ориентирующим переводником, процесс ГРП начинают с закачки гидроразрывной жидкости, в качестве которой используют сшитый гель для создания трещины в продуктивном пласте, после чего созданную трещину развивают закачкой линейного геля плотностью 1150 кг/м3 со сверхлегким проппантом плотностью 1050 кг/м3 фракции 40/80 меш массой 3 т с концентрацией 200 кг/м3, затем производят крепление трещины закачкой сшитого геля с проппантом фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта порциями со ступенчатым увеличением концентрации проппанта на 100 кг/м3, начиная от 200 кг/м3 до 900 кг/м3, при этом в продуктивном пласте с проницаемостью от 0,01 до 100 мД при креплении трещины закачивают сшитый гель с проппантом фракции 20/40 меш, а в продуктивном пласте с проницаемостью от 100 до 500 мД при креплении трещины закачивают сшитый гель с проппантом фракции 12/18 меш.

На фиг. 1-4 схематично и последовательно изображен предлагаемый способ ГРП с глинистым прослоем и газоносным горизонтом, где 1 - добывающая скважина; 2 - продуктивный пласт высотой Н; 3 - глинистый прослой (непроницаемый пропласток); 4 - верхний газоносный горизонт; 5 - колонна НКТ; 6 - гидромеханический перфоратор; 7 - ориентирующий переводник; 8 - резцы гидромеханического перфоратора 6; 9 - ориентированная перфорация, выполненная в интервале продуктивного пласта 2; 10 - пакер; 11 - трещина ГРП; 12 - сверхлегкий проппант фракции 40/80 меш; 13 - проппант фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта 2.

Добывающая скважина 1 (см. фиг. 1) вскрыла продуктивный пласт 2 высотой Н, например Н=3 м, с глинистым прослоем 3 (непроницаемым пропластком) сверху высотой h=1,5 м, выше которого расположен газоносный горизонт 4.

Продуктивный пласт 2 добывающей скважины 1 через существующую перфорацию (на фиг. 1-4 не показана) эксплуатируется, например, штанговым глубинным насосом (на фиг. 1-4 не показан). В процессе эксплуатации дебит в добывающей скважине 1 (см. фиг. 1) быстро снижается, в связи с чем необходимо проведение работ по интенсификации добычи нефти из продуктивного пласта 2 добывающей скважины 1. С этой целью производят ГРП продуктивного пласта 2.

Для этого извлекают из скважины эксплуатационное оборудование (на фиг. 1, 2, 3 и 4 не показано) и реализуют предлагаемый способ следующим образом.

Геофизическими методами, например, методом кроссдипольной акустики, определяют ориентацию главного максимального напряжения σmax (см. фиг. 1) в продуктивном пласте 2.

Затем в интервале продуктивного пласта 2 осуществляют гидромеханическую перфорацию, ориентированную в направлении главного максимального напряжения σmax.

Для этого на колонне НКТ 5 спускают гидромеханический перфоратор 6 с ориентирующим переводником 7 сверху, установив предварительно направляющую шлицевой втулки (на фиг. 1-4 не показана) ориентирующего переводника 7 и резцы 8 гидромеханического перфоратора 6 в одном направлении с направлением главного максимального напряжения пласта σmax, при этом на устьевом фланце (на фиг. 1-4 не показан) скважины 1 (см. фиг. 1) также выполняют метку в направлении главного максимального напряжения σmax (см. фиг. 1).

Достигнув интервала перфорации вращением колонны НКТ 5, совмещают направляющую шлицевой втулки ориентирующего переводника 7 (см. фиг. 1) и резцы 8 гидромеханического перфоратора 6 с направлением главного максимального напряжения пласта σmax, отмеченного меткой на устьевом фланце скважины 1.

После ориентации резцов 8 гидромеханического перфоратора 6 перфорируют интервал продуктивного пласта 2 с образованием перфорационных отверстий (ориентированной перфорации) 9, например, в виде двух рядов, по два отверстия в каждом ряду и с углом между отверстиями 180°, при этом отверстия выполнены друг под другом в направлении главного максимального напряжения σmax.

Работы с ориентирующим переводником 7 и гидромеханическим перфоратором 6 проводят согласно их инструкции по эксплуатации.

Извлекают из скважины 1 колонну НКТ с гидромеханическим перфоратором 6 и ориентирующим переводником 7.

Для проведения ГРП в скважину 1 спускают колонну НКТ 5 с пакером 10. В качестве пакера применяют любой известный пакер. Производят посадку пакера 10 в скважине 1 и осуществляют герметизацию заколонного пространства колонны НКТ 5.

Нижний конец колонны НКТ 5 размещают выше ориентированной перфорации 9, например на расстоянии 2 м.

Далее определяют объем гидроразрывной жидкости для создания трещины по следующей формуле:

Vг=k⋅H,

где Vг - объем гидроразрывной жидкости для создания трещины, м3;

k=2-3 - коэффициент перевода, м3/м;

Н - высота продуктивного пласта, м.

В данной формуле коэффициент перевода k получен опытным путем и зависит от физико-химических свойств пласта 2 (см. фиг. 1), в котором производят ГРП.

Высота продуктивного пласта 2 равна 3,0 м (см. выше).

Подставляя в формулу Vг=k⋅Н, получаем объем гидроразрывной жидкости:

Vг=(2-3)(м3/м)⋅3,0(м)=(6,0-9,0)м3.

Примем Vг=8,0 м3. В качестве гидроразрывной жидкости применяют любой известный сшитый гель.

Процесс ГРП начинают с закачки сшитого геля до создания трещины (см. фиг. 2) в продуктивном пласте 2. Для этого с помощью насосных агрегатов по нагнетательной линии (на фиг. 1-4 не показана) в скважину 1 (см. фиг. 2) по колонне НКТ 5 через отверстия ориентированной перфорации 9 продуктивного пласта 2 закачивают сшитый гель в объеме Vг=8,0 м3 и создают трещину 11'.

После чего созданную трещину 11' развивают до 11ʺ (см. фиг. 1 и 2) закачкой линейного геля плотностью 1150 кг/м3 со сверхлегким проппантом 12 фракции 40/80 меш массой 3 т=3000 кг с концентрацией 200 кг/м3. Поэтому, не прерывая закачки, т.е. процесс создания и развития трещины, производят закачку линейного геля в объеме: Vл=3000 кг/200 кг/м3=15 м3 плотностью 1150 кг/м3 со сверхлегким проппантом 12 фракции 40/80 меш с концентрацией 200 кг/м3.

При реализации предлагаемого способа обеспечивают плотность линейного геля 1150 кг/м3, для этого используют, например, сточную воду плотностью 1180 кг/м3 с добавлением любого известного загеливающего агента и доводят плотность линейного геля до 1150 кг/м3, при этом в процессе закачки с помощью ареометра контролируют плотность 1150 кг/м3 линейного геля.

Вследствие разницы плотностей линейного геля (ρлг=1150 кг/м3) и сверхлегкого проппанта (ρп=1050 кг/м3) 1150 кг/м3>1050 кг/м3, попав в трещину 11ʺ (см. фиг. 3), сверхлегкий проппант 12 фракции 40/80 меш всплывает в линейном геле и устремляется в верхнюю часть трещины 11ʺ и интервал непроницаемого пропластка (глинистого прослоя), а линейный гель фильтруется внизу, расширяя трещину 11ʺ. В верхней части трещины 11ʺ образуется плотная набивка из сверхлегкого проппанта 12 с минимальной проводимостью, так как выбран сверхлегкий проппант 12 одной из наименьших фракций 40/80 меш, обеспечивающий минимальную пропускную способность между зернами, что предотвращает развитие трещины 11'ʺ (см. фиг. 4) вверх через глинистый прослой 3 в газоносный горизонт 4.

Закачка сверхлегкого проппанта 12 (см. фиг. 3) в процессе развития трещины 11ʺ предотвращает ее расширение вверх. Это происходит из-за того, что сверхлегкий проппант 12 имеет меньшую плотность по сравнению с плотностью линейного геля, поэтому, попав в трещину 11ʺ, облегченный проппант 12 всплывает в линейном геле и устремляется в верхнюю часть трещины 11ʺ в призабойной зоне пласта (ПЗП), предотвращая ее развитие вверх, при этом линейный гель, освобожденный от сверхлегкого проппанта, выполняет роль жидкости разрыва и развивает трещину в длину (см. фиг. 4).

Создание трещины 11' и развитие трещины до 11ʺ, 11'ʺ согласно предложенному способу позволяют исключить прорыв трещины в газоносный горизонт 4, находящийся выше продуктивного пласта 2, через глинистый прослой 3 высотой h=1,5 м, а значит, повысить надежность создания и развития трещины.

Производят крепление трещины закачкой сшитого геля с проппантом 13 фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта порциями со ступенчатым увеличением концентрации проппанта на 100 кг/м3, начиная от 200 кг/м3 до 900 кг/м3.

В продуктивном пласте с проницаемостью от 0,01 до 100 мД при креплении трещины закачивают сшитый гель с проппантом фракции 20/40 меш, а в продуктивном пласте с проницаемостью от 100 до 500 мД при креплении трещины закачивают сшитый гель с проппантом фракции 12/18 меш.

Подбор фракции проппанта 13 при креплении трещины в продуктивном пласте в зависимости от проницаемости продуктивного пласта позволяет подобрать оптимальную проводимость трещины и обеспечить максимальный приток нефти через зерна проппанта, крепящего трещину 11'ʺ, что позволяет повысить проводимость трещины, а значит, увеличить эффективность крепления трещины.

Пример 1. Проницаемость пласта составляет 40 мД, используют проппант 13 фракции 20/40 меш, не прерывая процесс закачки насосными агрегатами по нагнетательной линии по колонне НКТ 5 через ориентированную перфорацию 9 производят крепление трещины 11'ʺ (см. фиг. 4) закачкой сшитого геля с проппантом фракции 20/40 меш порциями: 200 кг/м3, 300 кг/м3, 400 кг/м3, 500 кг/м3, 600 кг/м3, 700 кг/м3, 800 кг/м3, 900 кг/м3.

Пример 2. Проницаемость пласта составляет 200 мД, используют проппант 13 фракции 12/18 меш, не прерывая процесс закачки насосными агрегатами по нагнетательной линии по колонне НКТ 5 через ориентированную перфорацию 9 производят крепление трещины 11'ʺ (см. фиг. 4) закачкой сшитого геля с проппантом фракции 12/18 меш порциями: 200 кг/м3, 300 кг/м3, 400 кг/м3, 500 кг/м3, 600 кг/м3, 700 кг/м3, 800 кг/м3, 900 кг/м3.

Применяют любой известный состав сшитого геля. Сшитый гель имеет низкие потери давления на трение в трубах и высокую вязкость в пласте, что обеспечивает равномерное заполнение трещины 11'ʺ расклинивающим материалом (проппантом 13). При деструкции не образует осадка, не повреждает пласт и набивку, что также способствует сохранению высокопроводящей трещины 11'ʺ.

В 2-3 раза снижается гидравлическое сопротивление в интервале перфорации при реализации предлагаемого способа с использованием гидромеханического перфоратора, выполняющего прямоугольные отверстия с минимальным размером сторон 10 на 20 мм, что полностью исключает скачок давления в колонне НКТ, аварийную остановку процесса ГРП и недостижение проектных параметров трещины и обеспечивает меньшее давление про давки по сравнению с прототипом при сопоставимых объемах закачки.

Таким образом, производят крепление трещины 11'ʺ проппантом 13. По окончании крепления трещины стравливают давление из скважины, распакеровывают пакер 10 и извлекают его с колонной НКТ из скважины. Процесс ГРП закончен.

Сокращаются длительность и трудоемкость технологического процесса реализации способа, так как крепление трещины производится проппантом одной фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта 2.

Предлагаемый способ ГРП позволяет:

- повысить надежность создания и развития трещины при наличии выше продуктивного пласта глинистого прослоя и газоносного горизонта;

- повысить эффективность способа за счет подбора фракции проппанта в зависимости от проницаемости продуктивного пласта;

- снизить гидравлические сопротивления в интервале перфорации путем выполнения перфорационных отверстий гидромеханическим перфоратором и, как следствие, снизить давление продавки проппанта;

- сократить продолжительность и трудоемкость технологического процесса реализации способа.

Способ гидравлического разрыва продуктивного пласта с глинистым прослоем и газоносным горизонтом, включающий выполнение перфорации в интервале продуктивного пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение гидравлического разрыва пласта (ГРП) закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины, распакеровку пакера и его извлечение с колонной НКТ из скважины, отличающийся тем, что ориентированную перфорацию производят с помощью гидромеханического перфоратора с ориентирующим переводником, процесс ГРП начинают с закачки гидроразрывной жидкости, в качестве которой используют сшитый гель для создания трещины в продуктивном пласте, после чего созданную трещину развивают закачкой линейного геля плотностью 1150 кг/м3 со сверхлегким проппантом плотностью 1050 кг/м3 фракции 40/80 меш массой 3 т с концентрацией 200 кг/м3, затем производят крепление трещины закачкой сшитого геля с проппантом фракции 20/40 меш или 12/18 меш в зависимости от проницаемости продуктивного пласта порциями со ступенчатым увеличением концентрации проппанта на 100 кг/м3, начиная от 200 кг/м3 до 900 кг/м3, при этом в продуктивном пласте с проницаемостью от 0,01 до 100 мД при креплении трещины закачивают сшитый гель с проппантом фракции 20/40 меш, а в продуктивном пласте с проницаемостью от 100 до 500 мД при креплении трещины закачивают сшитый гель с проппантом фракции 12/18 меш.



 

Похожие патенты:

Изобретение относится к способам разработки нефтяной залежи с применением газа. Способ включает бурение скважин с горизонтальным стволом в нефтяной залежи, проведение гидравлического разрыва в горизонтальном стволе скважин с образованием трещин гидравлического разрыва, связывающих нефтяную и газовую залежи, разделенные между собой непроницаемым пропластком, и отбор нефти из нефтяной залежи.

Изобретение относится к керамическому расклинивающему агенту. Способ получения керамического расклинивающего агента включает стадии: а) подготовку, включающую измельчение исходных материалов, содержащих магнийсодержащий материал, и вспомогательных материалов с получением шихты, б) гранулирование шихты с получением гранул предшественника расклинивающего агента, в) обжиг гранул предшественника расклинивающего агента с получением гранул расклинивающего агента и стадию предварительного обжига магнийсодержащего материала в восстановительной атмосфере, которую проводят перед стадией а).

Настоящее изобретение относится к способу гидравлического разрыва подземного пласта. Способ гидравлического разрыва водным раствором несшитого полимера, включающий введение в ствол скважины водной текучей среды для гидравлического разрыва, содержащей полиэтиленоксид – ПЭО, в качестве агента снижения трения и неионный полимер - НП, и снижение трения водной текучей среды для гидравлического разрыва, когда указанная среда закачивается в ствол скважины, где НП защищает ПЭО от сдвигового разложения и где указанную среду вводят в ствол скважины при давлении, достаточном для создания или расширения гидравлического разрыва в подземном пласте, и массовое соотношение ПЭО и НП составляет от 1:20 до 20:1, и препятствование сдвиговому разложению ПЭО из-за турбулентного потока указанной среды.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды.

Изобретение относится к нефтяной промышленности и может быть применено для разработки нефтяных месторождений. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта, спуск обсадной колонны в горизонтальный ствол скважины и цементирование кольцевого пространства между обсадной колонной и горной породой, проведение гидромеханической перфорации во всех интервалах продуктивного пласта, извлечение колонны труб с гидромеханическим перфоратором из скважины, спуск колонны труб с пакером и проведение поинтервального ГРП в направлении от забоя к устью в каждом проперфорированном интервале обсадной колонны с последовательным отсечением каждого интервала.

Изобретение относится к нефтедобывающей промышленности и может быть применено для улучшения гидродинамической связи скважины с продуктивным пластом. Способ включает проведение гидравлического разрыва пласта (ГРП) путем спуска в скважину колонны труб, установку центральной задвижки на верхнем конце колонны труб, закачку по колонне труб жидкости разрыва при открытой центральной задвижке, создание давления разрыва пласта с образованием трещины и крепление трещины проппантом.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта при наличии попутной и/или подошвенной воды.

Изобретение относится к горному делу и может быть применено для гидравлического разрыва пласта в добывающей скважине при наличии попутной и/или подошвенной воды. Способ включает спуск колонны труб в скважину, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины, крепление трещины закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой.

Изобретение относится к частицам расклинивающего наполнителя для гидравлического разрыва подземного пласта. Способ изготовления частиц расклинивающего наполнителя включает изготовление суспензии керамического сырьевого материала, включающей реагент, содержащий полисахарид, характеризующейся содержанием твердой фазы приблизительно от 25 до 75 вес.%, формирование капель суспензии пропусканием суспензии через сопло при подвергании ее вибрации, при скорости пропускания приблизительно от 0,2 до 3 кг/ч, приведение капель суспензии в контакт с поверхностью жидкости, содержащей коагулянт, извлечение капель из жидкости, высушивание капель с образованием отформованных гранул и спекание гранул в температурном интервале с формированием частиц расклинивающего наполнителя.

Изобретение относится к жидкостям для бурения и обслуживания скважин. Способ обработки зоны подземного пласта, вскрытого с помощью буровой скважины, включает использование маслянистой сшивающей жидкой композиции, содержащей маслянистую жидкость, суспендирующий агент, представляющий собой глину или филлосиликатный материал, поверхностно-активное вещество и борсодержащий сшивающий агент, где маслянистая жидкость представляет собой углеводородное масло с температурой вспышки 70°C - 300°C и содержит 0,1% от максимальной массы ароматических углеводородов, выбранных из бензола, толуола, этилбензола и м-, о- и п-ксилолов (ВТЕХ) и алкилзамещенных бензольных компонентов, получение жидкости для обработки пласта, состоящей из воды, гелеобразующего агента и маслянистой сшивающей жидкой композиции, и введение указанной жидкости для обработки пласта в зону внутри буровой скважины, вскрывающей подземный пласт, маслянистая сшивающая жидкая композиция содержит от 0 до менее 5 ppb бензола, от 0 до менее 1000 ppb толуола, от 0 до менее 700 ppb этилбензола, и от 0 до менее 10000 ppb ксилола, и от 0 до менее 1000 ppb алкилзамещенных бензольных компонентов, включая С2- и С3-бензолы, определенных с применением метода испытаний ЕРА SW 8260.

Изобретение относится к способу разработки нефтяных месторождений, а именно к способу обработки призабойной зоны пласта, в частности к способу снижения обводненности скважинной продукции нефтяных добывающих скважин, и может быть применено на карбонатных или терригенных с карбонатным типом цемента коллекторах.

Изобретение относится к цементным композициям и способам использования цементных композиций с замедленным схватыванием в подземных формациях. Способ цементирования в подземных формациях, включающий получение цементной композиции с замедленным схватыванием, содержащей воду, пемзу, гашеную известь, фосфонатный замедлитель схватывания и диспергент типа карбоксилированного простого эфира, активацию цементной композиции с замедленным схватыванием активатором схватывания цемента, причем активатор схватывания цемента содержит по меньшей мере один активатор, выбранный из группы, состоящей из нанокремнезема, полифосфата и их комбинаций, подачу цементной композиции с замедленным схватыванием в подземную формацию и создание условий для схватывания цементной композиции с замедленным схватыванием в подземной формации.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам ремонтно-изоляционных работ (РИР). Технический результат, достигаемый изобретением, - повышение эффективности способа РИР, улучшение тампонирующей способности и упрочнение полученного тампонажного камня с применением структурообразующего реагента.

Изобретение относится к сельскому хозяйству и почвоведению, а именно к веществам, улучшающим состояние почвы, и может быть использовано в растениеводстве как в условиях закрытых грунтов, так и на открытых территориях.

Изобретение относится к композиции, включающей сшитые набухающие полимерные микрочастицы, способные гидролизоваться при нейтральном или более низком значении pH, и способу изменения водопроницаемости подземной формации путем введения таких композиций в подземную формацию.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, в частности к подготовке сырьевой шихты, которую используют при производстве проппантов средней плотности.

Изобретение относится к средствам тушения пожаров подачей пены в основание резервуара в слой нефтепродукта. Обнаруженный эффект синергетического действия компонентов позволяет получить композиции, которые способны к самопроизвольному растеканию по поверхности горящего нефтепродукта.

Изобретение относится к области цементирования обсадных колонн в нефтяных, газовых и газоконденсатных скважинах, вскрывающих солевые породы и пласты с полиминеральными водами высокой минерализации.

Изобретение относится к нефтегазовой отрасли, к технологическим жидкостям, в частности к жидкостям для глушения скважин. Жидкость содержит 2,0-70,0 мас.% неорганических солей или их смесей или гидратов этих солей, 0-20,0 мас.% дисперсной фазы, 0,2-20,0 мас.% полимерной композиции SCA-214, 0,02-2,0 мас.% поверхностно-активного вещества (ПАВ) и воду.

Настоящее изобретение относится к способу подземной обработки (варианты), способу цементирования и композициям, которые содержат пыль цементной печи, имеющую измененный средний размер частиц.

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды. Способ включает выполнение перфорации в интервале пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины в пласте циклической чередующейся закачкой по колонне НКТ жидкости-носителя с проппантом, стравливание давления из скважины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины. Для выполнения перфорации в скважину до интервала подошвы пласта спускают гидромеханический перфоратор на колонне НКТ, выполняют пары перфорационных отверстий по периметру скважины от подошвы к кровле пласта со смещением на угол 30° при выполнении каждой пары перфорационных отверстий. После выполнения перфорации колонну НКТ с перфоратором извлекают из скважины, в качестве гидроразрывной жидкости применяют гелированную нефть, определяют общий объем гелированной нефти, производят закачку гелированной нефти по колонне НКТ в интервал пласта с образованием трещины разрыва. Объем гелированной нефти после образования трещины используют в качестве жидкости-носителя в процессе крепления трещины. При этом перед креплением трещины объем оставшейся гелированной нефти делят на две равные части и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м3, с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м3, начиная от 200 до 800 кг/м3. Причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м3. Технический результат заключается в повышении эффективности изоляции трещины от попутной и подошвенной воды; повышении проводимости трещины и надежности реализации способа; повышении качества крепления призабойной зоны пласта; снижении дополнительных затрат. 5 ил., 1 табл.
Наверх