Способ определения термоокислительной стабильности смазочных материалов



Способ определения термоокислительной стабильности смазочных материалов
Способ определения термоокислительной стабильности смазочных материалов
Способ определения термоокислительной стабильности смазочных материалов
Способ определения термоокислительной стабильности смазочных материалов

 


Владельцы патента RU 2618581:

Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (RU)

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления. Через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Новым является то, что при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С. При этом дополнительно определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости. Причем по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления. Технический результат - повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета влияния температуры и продуктов окисления на вязкостно-температурные характеристики смазочных материалов. 3 ил., 2 табл.

 

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров оценки процесса окисления. При этом испытывают пробу смазочного материала постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, строят графическую зависимость изменения коэффициента поглощения светового потока от времени испытания, продлевают линию зависимости после точки перегиба до пересечения с осью абсцисс и по абсциссе этой точки определяют время начала образования нерастворимых примесей, по точке перегиба зависимости определяют время начала коагуляции нерастворимых примесей, а по предельному значению коэффициента поглощения светового потока определяют ресурс работоспособности смазочного материала (Патент РФ №2219530 С1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский Б.И. и др. RU).

Недостатком известного аналога является то, что в нем не учитывается влияние продуктов окисления на индекс вязкости.

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, при котором испытывают пробу смазочного материала постоянного объема в присутствии воздуха с перемешиванием, при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят, как минимум при трех, температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др. RU, прототип).

Общим недостатком известного аналога и прототипа является недостаточная информативность о качестве товарных смазочных материалов, так как в известных способах не учитывается влияние температуры и продуктов окисления на их вязкостно-температурные характеристики.

Задачей изобретения является повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета влияния температуры и продуктов окисления на вязкостно-температурные характеристики смазочных материалов.

Для решения поставленной задачи предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Новым является то, что при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С, при этом дополнительно определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости, при этом по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления.

На фиг. 1, 2 и 3 представлены графические зависимости показателя термоокислительной стабильности от оптической плотности для минерального моторного масла Роснефть М-10Г (кривая 1) и частично синтетического моторного масла Роснефть Maximum 10W-40 SL/CF (кривая 2), полученные по результатам испытаний трех проб каждой марки при температурах окисления соответственно 180°С, 170°С и 160°С.

Способ определения термоокислительной стабильности смазочных материалов осуществляют следующим образом. Пробу исследуемого смазочного материала постоянной массы, например 100±0,1 г, нагревают до температуры в зависимости от базовой основы (минеральное, частично синтетическое, синтетическое), назначения (моторное, трансмиссионное, гидравлическое, индустриальное) и группы эксплуатационных свойств с перемешиванием с помощью механической мешалки для смешивания с кислородом воздуха. Температура и частота вращения механической мешалки поддерживаются постоянными.

Через равные промежутки времени термостатирования отбирают пробу окисленного смазочного материала для фотометрирования и определения оптической плотности из выражения: , где F0 и F соответственно световой поток, падающий на поверхность смазочного материала, и световой поток, прошедший через слой заданной толщины; а также для определения кинематической вязкости, измеряемой при температурах 40°С и 100°С. Затем по ГОСТу 25371 - 97 (ИСО 2909-81) определяют индекс вязкости, характеризующий пологость вязкостно-температурной зависимости исследуемого смазочного материала, и показатель относительного индекса вязкости: , где ИВо и ИВт - соответственно индексы вязкости окисленного и товарного смазочных материалов. Испытание смазочных материалов продолжают до достижения оптической плотности испытуемого смазочного материала значений, равных 0,6-0,65.

По результатам испытания определяют показатель термоокислительной стабильности Птос

.

Данный показатель учитывает изменение оптической плотности и индекса вязкости при окислении испытуемого смазочного материала. Затем данный исследуемый смазочный материал испытывают при температуре на 10°С выше или ниже выбранной по описанной выше технологии и строят графические зависимости показателя термоокислительной стабильности Птос от оптической плотности по результатам, полученным при трех температурах испытания.

Результаты испытания смазочных масел на термоокислительную стабильность приведены в соответствующих таблицах 1 и 2.

Представленные на фиг. 1-3 графические зависимости, построенные на основании данных таблиц 1, 2, описываются линейными уравнениями: Птос=аD,

где а - коэффициент, характеризующий скорость изменения показателя термоокислительной стабильности от оптической плотности окисленного масла. Для минерального моторного масла Роснефть М-10Г регрессионное уравнение имеет вид для температур: 180°С - Птос=1,28D; 170°С - Птос=1,381; 160°С - Птос=1,48D.

Для частично синтетического моторного масла Роснефть максимум 10W-40 SL/CF регрессионное уравнение имеет вид для температур: 180°С - Птос=0,98D; 170°С - Птос=1,12D; 160°С - Птос=1,2D.

Для исследованных смазочных материалов установлено, что с увеличением температуры окисления скорость изменения показателя термоокислительной стабильности Птос уменьшается за счет более интенсивного увеличения индекса вязкости (вязкостно-температурной характеристики).

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности смазочных материалов за счет учета влияния температуры и продуктов окисления на оптические свойства и индекс вязкости, а также промышленно применимо, так как позволяет выявить наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления, что имеет практическое значение при выборе смазочных масел.

Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления, отличающийся тем, что при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С, при этом дополнительно определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости, при этом по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления.



 

Похожие патенты:

Изобретение относится к оценке эксплуатационных свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к оценке лакообразующих свойств моторных масел в условиях динамического тонкослойного окисления и может быть использовано в нефтехимической промышленности, в частности в лабораториях при производстве новых видов моторных масел.

Изобретение относится к технологии испытания смазочных масел. При осуществлении способа отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, также дополнительно определяют кинематическую вязкость термостатированной пробы масла при температурах 40 и 100°C, индекс вязкости, строят графические зависимости индекса вязкости от температуры испытания и от коэффициента поглощения светового потока, по величине изменения индекса вязкости от коэффициента поглощения светового потока определяют влияние концентрации продуктов температурной деструкции на индекс вязкости, а температурную стойкость определяют по величине изменения индекса вязкости в зависимости от температуры испытания и концентрации продуктов температурной деструкции, при этом чем меньше изменение индекса вязкости, тем выше температурная стойкость испытуемого масла.

Изобретение относится к области контроля качества нефтепродуктов. Способ включает отбор проб в различных местах в процессе приготовления пластичных смазочных материалов, их гомогенизацию и анализ, причем гомогенизацию объединенных проб пластичных смазочных материалов производят при их перемешивании плунжером со скоростью 60±10 двойных тактов в минуту, а анализ содержания воды в пластичных смазочных материалах осуществляют с помощью ИК Фурье-спектроскопии, для этого сначала приготавливают различные образцы пластичных смазочных материалов с известным содержанием воды, затем для образцов пластичных смазочных материалов с известным содержанием воды строят тарировочный график зависимости содержания воды от оптической плотности на частоте наибольшего поглощения 3388 см-1 и по результатам тарировочного графика на этой частоте определяют содержание воды в исследуемых пластичных смазочных материалах.

Изобретение относится к области исследования смазочных масел. Способ включает в себя непрерывное пропускание воздуха через испытуемое смазочное масло при температуре, на 20°С превышающей максимальную рабочую температуру испытуемого смазочного масла, отбор через равные промежутки времени окисленного смазочного масла и определение таких показателей степени деградации смазочного масла, как содержание осадка, нерастворимого в изооктане, а также фактор нестабильности эксплуатационных свойств смазочного масла, после чего строят график зависимости изменения определяемых показателей от времени окисления, проводят касательные на начальном участке полученной кривой и на участке, где произошел значительный рост определяемого показателя, координату точки пересечения двух касательных на оси времени окисления принимают за значение условного эксплуатационного ресурса.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки.

Изобретение относится к области технической диагностики технических систем, имеющих замкнутую систему смазки, и может быть использовано для контроля качества моторных масел в процессе эксплуатации.

Изобретение относится к области испытания моторных масел. Способ включает взятие пробы масла из двигателя, нанесение капли масла на тестовую подложку из фильтровального материала, анализ рисунка масляного пятна, выделение характерных признаков рисунка масляного пятна с разделением рисунка масляного пятна по окраске по меньшей мере на три контрольные зоны.
Изобретение относится к экспресс-методам определения наличия и качества диспергирующе-стабилизирующих свойств у смазочных масел. Способ осуществляют путем введения в масло и диспергирования в нем жидкого загрязнителя и после его диспергирования эмульсии придают состояние покоя, при этом масло предварительно загрязняют 0,05-0,1% загрязнителя, перемешивают и оставляют на 20-24 часа в состоянии покоя, после чего в него дополнительно вводят жидкий загрязнитель 60-70% от объема пробы и оставляют еще на 12-15 часов, после чего осуществляют оценку уровня работоспособности масла по изменению высоты столба расслоившейся эмульсии за определенный период времени или ее отсутствию и дополнительно по высоте столба расслоившейся верхней эмульсии, и/или высоте столба расслоившейся основной эмульсии, и/или высоте столба выпавшего загрязнителя, а также объема вводимого в масло загрязнителя, при котором начинается выпадение загрязнителя в осадок или расслоение эмульсии, а также возможных их сочетаний осуществляют количественное определение с оценкой уровня работоспособности диспергирующе-стабилизирующей присадки смазочного масла.

Группа изобретений относится к испытанию моторных масел и используется для исследования процессов их старения. В процессе испытания масло нагревают, охлаждают, перемешивают, осуществляют его циркуляцию под давлением, центрифугируют, проводят аэрацию атмосферным влажным воздухом и отработавшими газами, сжимают и разбрызгивают под давлением с целью осуществления гидромеханической, термохимической и термодинамической деструкции, обеспечивая имитацию работы масла как в системе смазки двигателя, а также в его цилиндропоршневой группе, подшипниках скольжения коленчатого вала и в газораспределительном механизме.

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах.

Изобретение относится к области исследования материалов с помощью тепловых средств и описывает способ и устройство для количественного определения содержания восков и воскоподобных веществ в рафинированных растительных маслах.

Изобретение относится к способу и устройству управления процессом селективного лазерного спекания объемного изделия из порошков. Способ состоит в регистрации температуры поверхности и ее распределения в области воздействия концентрированного потока энергии в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности.

Изобретение относится к изготовлению или получению изделий из стекла или стеклокерамики. Изобретение основано на том, чтобы обеспечить получение изделий из стекла или стеклокерамики, имеющих точно охарактеризованные термомеханические свойства.

Блок держателя для нанокалориметрического сенсора предназначен для размещения на X-Y столике оптического микроскопа и проведения in-situ исследования морфологии и теплофизических свойств материалов различного типа.

Блок держателя нанокалориметрического сенсора, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике), дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и теплофизических свойств материалов различного типа.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах.

Изобретение относится к термическому анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах.

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве.
Наверх